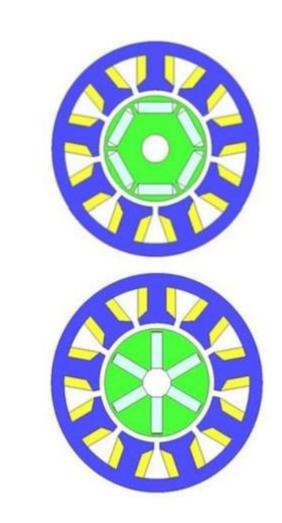
Теория синхронных микромашин

Теория, конструкции, характеристики



Синхронные микродвигатели

Главная особенность СД — постоянная частота вращения $n=n_{
m c}$ при колебаниях U и $M_{
m c}$

$$n_{\rm c} = \frac{60f}{p}$$

Основные требования к СД

- общие для силовых двигателей
 - высокие энергетические показатели
 - малые габариты и масса
- специфические для СД
 - постоянство средней или мгновенной скорости

Питание

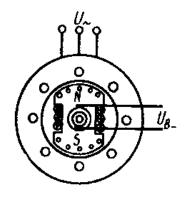
- » 3-фазное или 1-фазное
- » частота напряжения f = 50 / 400 / 1000 Гц

Конструкция статора

- классическая: сердечник с обмотками
- аналогична асинхронным микродвигателям

Синхронные микродвигатели

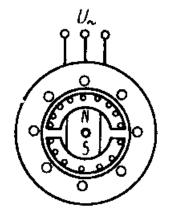
Конструкция ротора



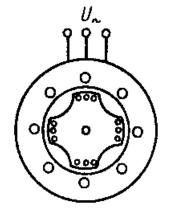
СД с электромагнитным возбуждением

- » сложность конструкции (в микромашинах)
- » сложность пуска
- » необходимость источника постоянного тока для ОВ
- » передача тока ОВ к вращающемуся ротору

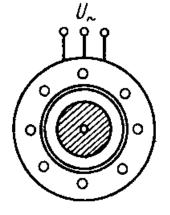
Применяются в микромашинах очень редко



с постоянными магнитами



реактивные



гистерезисные

А также тихоходные

- » многополюсные (реактивные/гистерезисные)
- индукторные(с электромагнитной редукцией)
- » редукторные (со встроенным редуктором)
- » СД с катящимся / волновым ротором

Общая теория синхронных микродвигателей

Уравнения и векторная диаграмма

Уравнение напряжений синхронного микродвигателя

Основное отличие — значительная величина активного сопротивления r_{S} (им нельзя пренебрегать)

Уравнение баланса напряжений для статора СД $\dot{U} = -\dot{E}_{\delta} - \dot{E}_{\sigma} + \dot{I}r_{S}$

где E_{δ} – ЭДС, наведенная в обмотке статора результирующим потоком в зазоре Φ ,

 E_{σ} – ЭДС, наведенная в обмотке статора потоком рассеяния статора $\dot{E}_{\sigma}=-j\dot{I}x_{S}$

Т.е. уравнение баланса напряжений $\dot{U}=-\dot{E}_{\delta}+j\dot{I}x_{S}+\dot{I}r_{S}=-\dot{E}_{\delta}+\dot{I}Z_{S}$

Т.к. напряжение питания уравновешивается в основном ЭДС, а $E=4,44\,f\!w\Phi$

То при работе СД от сети с постоянным напряжением поток остается неизменным

Результирующий поток в зазоре Φ :

- » поток возбужденного ротора $\Phi_{_{\mathrm{B}}}$
- » поток реакции статора Φ_a (от намагничивающего тока статора)

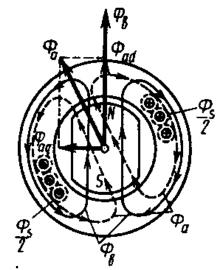
При постоянном напряжении питания (и $\Phi \approx {
m const}$) доля Φ_a зависит от величины возбужденности ротора (т.е. $\Phi_{
m B}$)

- » в СД можно увеличить $\Phi_{\scriptscriptstyle \rm R}$ так, чтобы $\Phi_{\scriptscriptstyle \it d}=0$ (тогда $\cos\phi=1$)
- » при дальнейшем увеличении $\Phi_{_{\mathrm{B}}}$ поток Φ_{a} поменяет знак (реактивная мощность o в сеть)
- » в СД с ПМ величина возбужденности ротора постоянна (и обычно $\Phi_{_{\rm B}}\!<\Phi$)

Уравнение напряжений синхронного микродвигателя

ЭДС от результирующего потока в зазоре $\dot{E}_{\rm \delta}=\dot{E}_{\rm 0}+\dot{E}_{a}$ где $E_{\rm 0}$ – ЭДС, наводимая основным потоком ротора $\Phi_{\rm B}$ E_{a} – ЭДС, наводимая потоком реакции статора Φ_{a}

Т.к. потоки $\Phi_{\scriptscriptstyle \rm B}$ и Φ_a смещены в пространстве, ЭДС E_0 и E_a сдвинуты по фазе во времени



Уравнение баланса напряжений $\dot{U}=-\dot{E}_{\delta}+\dot{I}Z_{S}=-\dot{E}_{0}-\dot{E}_{a}-\dot{E}_{\sigma}+\dot{I}r_{S}$

В СД с явновыраженными полюсами проводимость зазора не постоянна, поэтому для анализа магнитной цепи применяют метод двух реакций, раскладывая Φ_a на составляющие Φ_{ad} и Φ_{aq}

Тогда и наводимую ЭДС E_a можно заменить суммой $\dot{E}_a = \dot{E}_{ad} + \dot{E}_{aq}$

Уравнение баланса напряжений $\dot{U}=-\dot{E}_0-\dot{E}_{ad}-\dot{E}_{aq}-\dot{E}_{\sigma}+\dot{I}r_{S}$

Уравнение напряжений синхронного микродвигателя

Ток статора, создающий поток Φ_a , также удобно разложить на составляющие

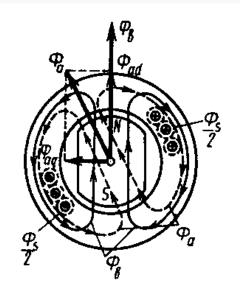
$$I_d = I \sin \psi$$

$$I_q = I \cos \psi$$

где ψ - угол между током I и ЭДС - E_0 (или между I и осью q)

$$\dot{E}_{ad} = -j\dot{I}_{d}x_{ad}$$

$$\dot{E}_{aq} = -j\dot{I}_q x_{aq}$$



Здесь x_{ad} – синхронное индуктивное сопротивление фазы статора по продольной оси (обусловлено проводимостью зазора для потока Φ_{ad})

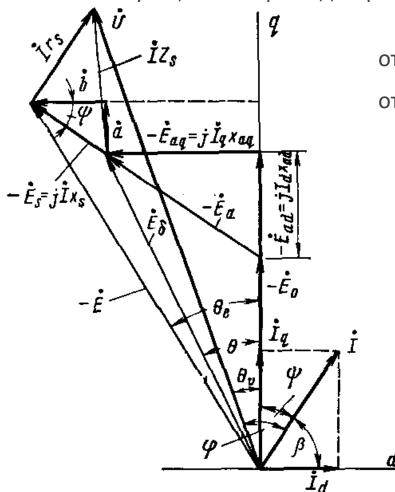
 x_{aq} — синхронное индуктивное сопротивление фазы статора по поперечной оси (обусловлено проводимостью зазора для потока Φ_{aq})

Уравнение баланса напряжений $\dot{U}=-\dot{E}_0+j\dot{I}_dx_{ad}+j\dot{I}_qx_{aq}+j\dot{I}x_S+\dot{I}r_S$

Векторная диаграмма ненасыщенного синхронного микродвигателя

Уравнение баланса напряжений $\dot{U}=-\dot{E}_0+j\dot{I}_dx_{ad}+j\dot{I}_qx_{aq}+j\dot{I}x_S+\dot{I}r_S$

Соответствующая векторная диаграмма



Из векторной диаграммы:

отрезок
$$|\dot{a}| = I x_S \sin \psi = I_d x_S$$
 $\dot{a} = j \dot{I}_d x_S$

отрезок
$$\left| \dot{b} \right| = I \, x_S \cos \psi = I_q x_S$$
 $\dot{b} = j \dot{I}_q x_S$

Т.е. падение напряжения

$$j\dot{I} x_S = \dot{a} + \dot{b} = j\dot{I}_d x_S + j\dot{I}_q x_S$$

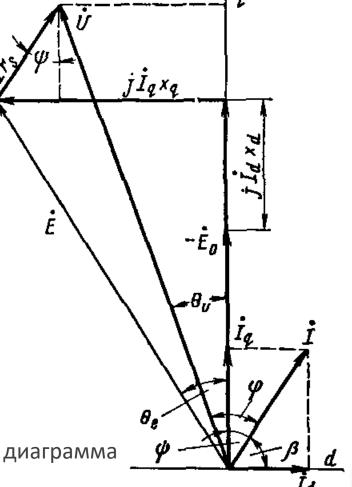
Тогда уравнение баланса напряжений

$$\dot{U} = -\dot{E}_{0} + j\dot{I}_{d}x_{ad} + j\dot{I}_{q}x_{aq} + j\dot{I}_{d}x_{S} + j\dot{I}_{q}x_{S} + \dot{I}r_{S}$$

или
$$\dot{U}=-\dot{E}_0+j\dot{I}_dx_d+j\dot{I}_qx_q+\dot{I}r_S$$
 где $x_d=x_{ad}+x_S$

$$x_q = x_{aq} + x_S$$

Соответствующая векторная диаграмма



Общая теория синхронных микродвигателей

Токи, мощности и электромагнитный момент

Ток статора синхронного микродвигателя

С помощью векторной диаграммы найдем выражения для токов

Запишем проекции вектора U на оси d и q

$$U\cos\theta_U = E_0 + I_d x_d + Ir_S \cos\psi$$

$$I_q x_q = U \sin \theta_U + I r_S \sin \psi$$

Перепишем с учетом $I\cos \psi = I_q$ $I \sin \psi = I_A$

$$U\cos\theta_U - E_0 = I_d x_d + I_q r_S$$

$$-U\sin\theta_U = I_d r_S - I_q x_q$$

Выразим составляющие токов

$$I_{d} = \frac{(U\cos\theta_{U} - E_{0})x_{q} - Ur_{s}\sin\theta_{U}}{r_{S}^{2} + x_{d}x_{q}} \qquad I_{q} = \frac{(U\cos\theta_{U} - E_{0})r_{S} + Ux_{d}\sin\theta_{U}}{r_{S}^{2} + x_{d}x_{q}}$$

$$I_q = \frac{(U\cos\theta_U - E_0)r_S + Ux_d\sin\theta_U}{r_S^2 + x_dx_q}$$

Для СД с ПМ введем понятие степени возбужденности ротора $\epsilon = \frac{E_0}{E_0}$

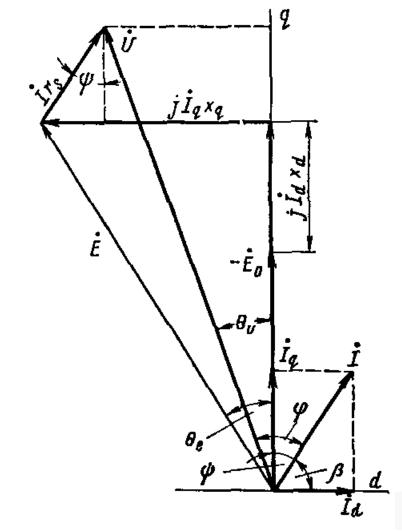
Тогда составляющие токов

$$I_d = \frac{U}{r_S^2 + x_d x_q} \left(x_q \cos \theta_U - x_q \varepsilon - r_S \sin \theta_U \right)$$

$$I_{q} = \frac{U}{r_{S}^{2} + x_{d}x_{a}} \left(r_{S} \cos \theta_{U} - r_{S} \varepsilon + x_{d} \sin \theta_{U} \right)$$

Полный ток статора

$$I = \sqrt{I_d^2 + I_q^2}$$



Мощность и момент синхронного микродвигателя

Мощность, потребляемая двигателем из сети (через фазные величины) $P_S = mUI\cos\phi$

С помощью векторной диаграммы выразим угол $\phi = \Theta_U + \psi$

Тогда мощность $P_S = mUI\cos(\theta_U + \psi) = mUI\cos\psi\cos\theta_U - mUI\sin\psi\sin\theta_U$

С учетом $I \cos \psi = I_q$ $I \sin \psi = I_d$

электрическая мощность $P_{S} = mUI_{q}\cos\theta_{U} - mUI_{d}\sin\theta_{U}$

Подставив выражения для I_d , I_q получим

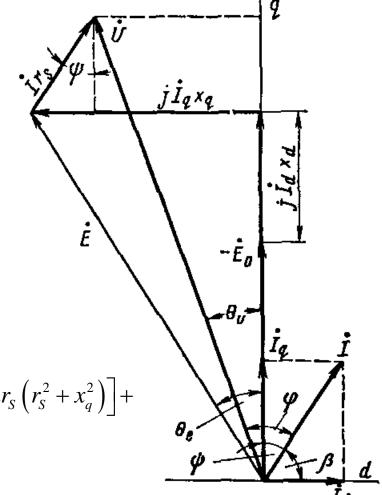
$$P_S = \frac{mU^2}{r_S^2 + x_d x_q} \left[\varepsilon \left(x_q \sin \theta_U - r_S \cos \theta_U \right) + \frac{1}{2} \left(x_d - x_q \right) \sin 2\theta_U + r_S \right]$$

Электромагнитная мощность $P_{\rm ЭM} = P_{\rm S} - \Delta P_{\rm ЭS} = P_{\rm S} - m I^2 r_{\rm S}$ (без учета потерь в стали)

Электромагнитный момент СД $M = \frac{P_{
m SM}}{\Omega_c}$

$$M = \frac{mU^{2}\varepsilon}{\Omega_{c}(r_{S}^{2} + x_{d}x_{q}^{2})^{2}} \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{d} \right) \sin\theta_{U} + r_{S} \left(2x_{q}^{2} + r_{S}^{2} - x_{d}x_{q} \right) \cos\theta_{U} - \varepsilon r_{S} \left(r_{S}^{2} + x_{q}^{2} \right) \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \sin\theta_{U} \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right) \right] + C \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{q} \right)$$

$$+\frac{mU^{2}}{2\Omega_{c}} \cdot \frac{x_{d} - x_{q}}{(r_{S}^{2} + x_{d}x_{q})^{2}} \left[\left(x_{d}x_{q} - r_{S}^{2} \right) \sin 2\theta_{U} + r_{S} \left(x_{d} + x_{q} \right) \cos 2\theta_{U} - r_{S} \left(x_{d} - x_{q} \right) \right]$$
3MAY



Электромагнитный момент синхронного микродвигателя

Момент синхронного микродвигателя

$$M = \frac{mU^{2}\varepsilon}{\Omega_{c}(r_{S}^{2} + x_{d}x_{q})^{2}} \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{d} \right) \sin\theta_{U} + r_{S} \left(2x_{q}^{2} + r_{S}^{2} - x_{d}x_{q} \right) \cos\theta_{U} - \varepsilon r_{S} \left(r_{S}^{2} + x_{q}^{2} \right) \right] + \frac{mU^{2}}{2\Omega_{c}} \cdot \frac{x_{d} - x_{q}}{(r_{S}^{2} + x_{d}x_{q})^{2}} \left[\left(x_{d}x_{q} - r_{S}^{2} \right) \sin2\theta_{U} + r_{S} \left(x_{d} + x_{q} \right) \cos2\theta_{U} - r_{S} \left(x_{d} - x_{q} \right) \right]$$

Вывод формулы проведен аналогично классической теории ЭМ Но здесь нельзя пренебрегать активным сопротивлением обмотки $r_{\rm s}$

Для ЭМ средней и большой мощности, полагая $r_{\rm S}=0$, получим

$$M = \frac{mE_0U}{\Omega_c x_d} \sin \theta + \frac{mU^2}{2\Omega_c} \left(\frac{1}{x_a} - \frac{1}{x_d} \right) \sin 2\theta$$

Однако структура момента сохраняется: $M = M_{\varepsilon} + M_{da}$

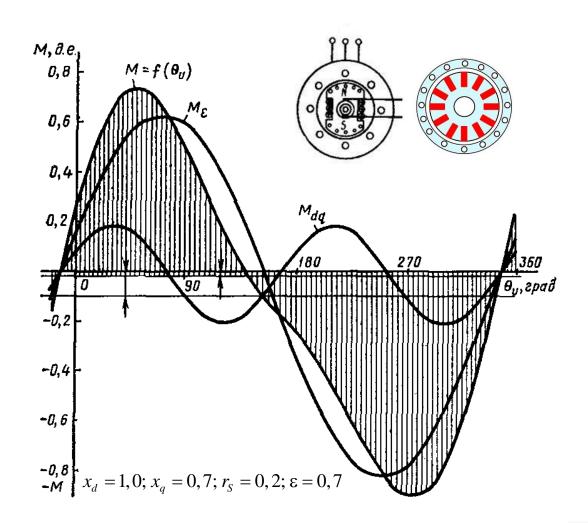
- » M_{ε} основной электромагнитный момент (зависит от степени возбужденности ротора ε)
- » M_{dq} реактивный момент / момент явнополюсности (зависит от соотношения x_d и x_a)

В СД с неявновыраженными полюсами (или с поверхностными ПМ) $x_d = x_q$ и реактивный момент $M_{dq} = 0$

Угловая характеристика синхронного микродвигателя

В СД с электромагнитным возбуждением (или в СД с тангенциальными ПМ) обычно $x_d > x_q$ и реактивный момент при малых нагрузках (малых углах θ_U) положителен $M_{dq} > 0$

$$M = \frac{mE_0 U}{\Omega_c x_d} \sin \theta + \frac{mU^2}{2\Omega_c} \frac{x_d - x_q}{x_d x_q} \sin 2\theta$$

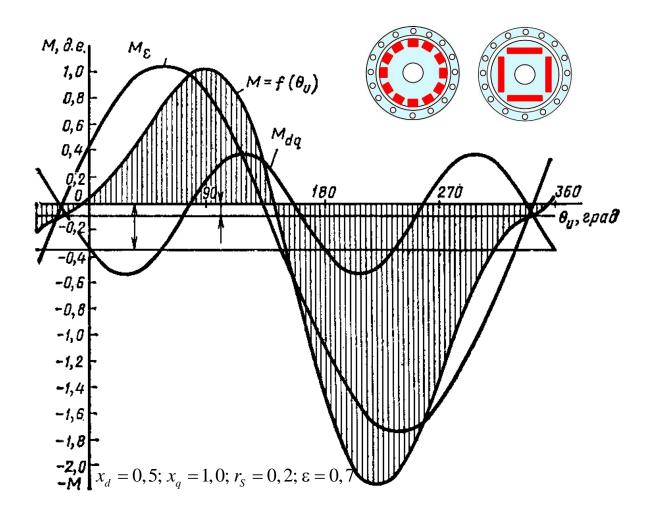


Угловая характеристика синхронного микродвигателя

В СД с внутренними ПМ из-за из малого μ_r оказывается $x_d < x_q$

и реактивный момент при малых нагрузках (малых углах $\theta_{\it U}$) отрицателен $M_{\it dq} < 0$

$$M = \frac{mE_0U}{\Omega_c x_d} \sin \theta + \frac{mU^2}{2\Omega_c} \frac{x_d - x_q}{x_d x_q} \sin 2\theta$$



Электромагнитный момент (момент от поля возбуждения)

$$M_{\varepsilon} = \frac{mU^{2}\varepsilon}{\Omega_{c}(r_{S}^{2} + x_{d}x_{q})^{2}} \left[\left(x_{d}x_{q}^{2} - r_{S}^{2}x_{q} + 2r_{S}^{2}x_{d} \right) \sin\theta_{U} + r_{S} \left(2x_{q}^{2} + r_{S}^{2} - x_{d}x_{q} \right) \cos\theta_{U} - \varepsilon r_{S} \left(r_{S}^{2} + x_{q}^{2} \right) \right]$$

Перепишем формулу электромагнитного момента в виде $M_{\varepsilon} = A\sin\theta_U + B\cos\theta_U + C = A_{\varepsilon}\sin(\theta_U + \alpha_{\varepsilon}) - M_{\varepsilon}$

$$A_{\epsilon} - \text{амплитуда синусоиды} \quad A_{\epsilon} = \frac{mU^2\epsilon}{\Omega_{\mathrm{c}}\left(r_{\mathrm{S}}^2 + x_d x_q\right)^2} \sqrt{\left(x_d x_q^2 - r_{\mathrm{S}}^2 x_q + 2r_{\mathrm{S}}^2 x_d\right)^2 + r_{\mathrm{S}}^2 \left(2x_q^2 + r_{\mathrm{S}}^2 - x_d x_q\right)^2}$$

$$lpha_{arepsilon}$$
 – фазовый сдвиг, определяемый как $ext{tg}\,lpha_{arepsilon} = rac{r_{\!\scriptscriptstyle S}\left(2x_{\!\scriptscriptstyle q}^2 + r_{\!\scriptscriptstyle S}^2 - x_{\!\scriptscriptstyle d}x_{\!\scriptscriptstyle q}
ight)}{x_{\!\scriptscriptstyle d}x_{\!\scriptscriptstyle q}^2 - r_{\!\scriptscriptstyle S}^2x_{\!\scriptscriptstyle q} + 2r_{\!\scriptscriptstyle S}^2x_{\!\scriptscriptstyle d}}$

Последнее слагаемое не зависит от угла нагрузки и всегда отрицательно ightarrow тормозной момент $M_{\scriptscriptstyle
m ET}$

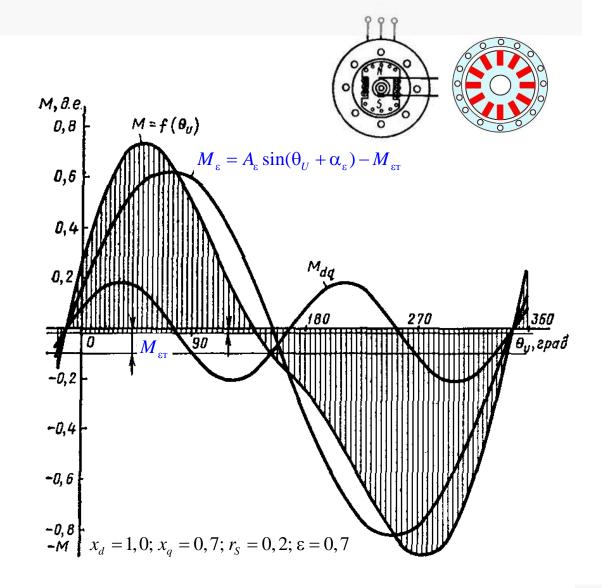
$$M_{_{\mathrm{ET}}} = -rac{mU^{2}\epsilon}{\Omega_{_{\mathrm{C}}}(r_{_{S}}^{2} + x_{_{d}}x_{_{q}})^{2}}\epsilon r_{_{S}}\left(r_{_{S}}^{2} + x_{_{q}}^{2}
ight) = rac{mE_{_{0}}^{2}r_{_{S}}}{\Omega_{_{\mathrm{C}}}}rac{r_{_{S}}^{2} + x_{_{q}}^{2}}{\left(r_{_{S}}^{2} + x_{_{d}}x_{_{q}}
ight)^{2}}$$

» $M_{_{\mathrm{ET}}}$ зависит от возбуждения полюсов $(E_{_{0}})$ и $r_{_{S}}$, но не зависит от U

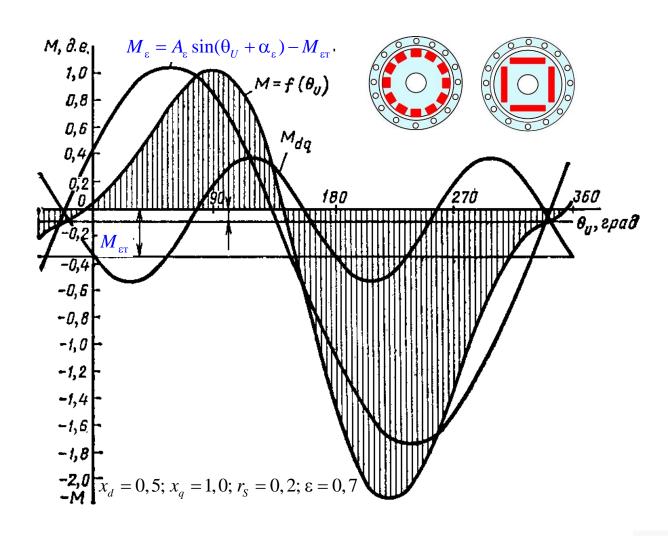
Электромагнитный момент изменяется по закону \sin от угла θ_{II} Но за счет $r_{\scriptscriptstyle S}$ синусоида смещается влево на угол $lpha_{\scriptscriptstyle
m E}$ и вниз на $M_{\scriptscriptstyle
m ET}$

- » причина возникновения $M_{
 m er}$ потери в обмотке статора от токов, наводимых полем возбуждения (генераторный момент)

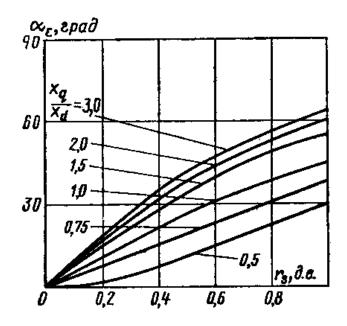
Вращающий момент при $x_d > x_q$



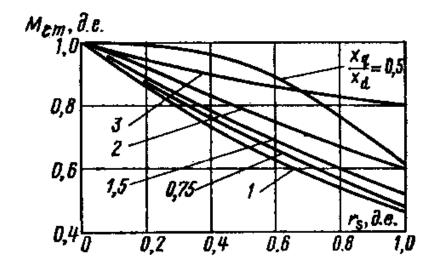
Вращающий момент при $x_d < x_q$



Угол смещения синусоиды α_{ε} в зависимости от r_{S} для разных СД



Величина максимального электромагнитного момента $M_{\varepsilon m}$ в зависимости от $\underline{r}_{\underline{S}}$ для разных СД



Реактивный момент (момент явнополюсности)

$$M_{dq} = \frac{mU^{2}}{2\Omega_{c}} \cdot \frac{x_{d} - x_{q}}{(r_{S}^{2} + x_{d}x_{q})^{2}} \left[\left(x_{d}x_{q} - r_{S}^{2} \right) \sin 2\theta_{U} + r_{S} \left(x_{d} + x_{q} \right) \cos 2\theta_{U} - r_{S} \left(x_{d} - x_{q} \right) \right]$$

Аналогично электромагнитному моменту представим в виде $M_{dq} = A \sin 2\theta_U + B \cos 2\theta_U + C = A_{dq} \sin 2(\theta_U + \alpha_{dq}) - M_{dq}$

$$A_{dq} - \text{амплитуда синусоиды} \qquad A_{dq} = \frac{mU^2(x_d - x_q)}{2\Omega_{\rm c} \left(r_{\rm S}^2 + x_d x_q\right)^2} \sqrt{\left(x_d x_q - r_{\rm S}^2\right)^2 + r_{\rm S}^2 \left(x_d + x_q\right)^2}$$

$$lpha_{dq}$$
 — фазовый сдвиг, определяемый как $ext{tg } 2lpha_{dq} = rac{r_{S}\left(x_{d} + x_{q}
ight)}{x_{d}x_{q} - r_{S}^{2}}$

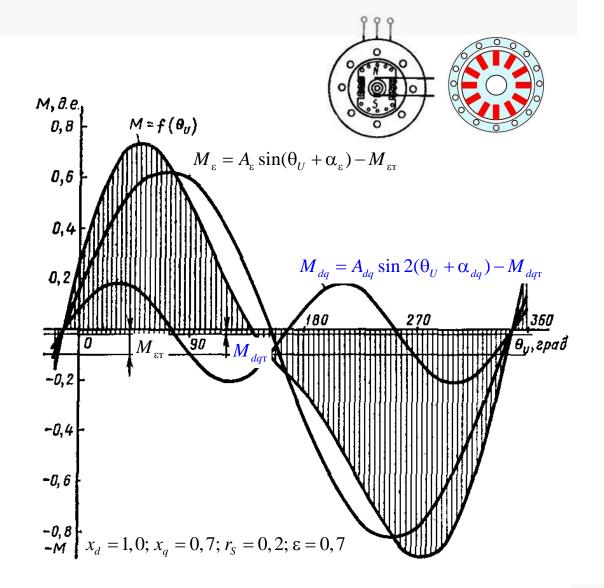
Тормозной реактивный момент $M_{
m ext}$

$$M_{dqT} = -\frac{mU^{2}}{2\Omega_{c}} \cdot \frac{x_{d} - x_{q}}{(r_{S}^{2} + x_{d}x_{q})^{2}} r_{S} \left(x_{d} - x_{q}\right) = \frac{mU^{2}r_{S}}{2\Omega_{c}} \cdot \frac{\left(x_{d} - x_{q}\right)^{2}}{\left(r_{S}^{2} + x_{d}x_{q}\right)^{2}}$$

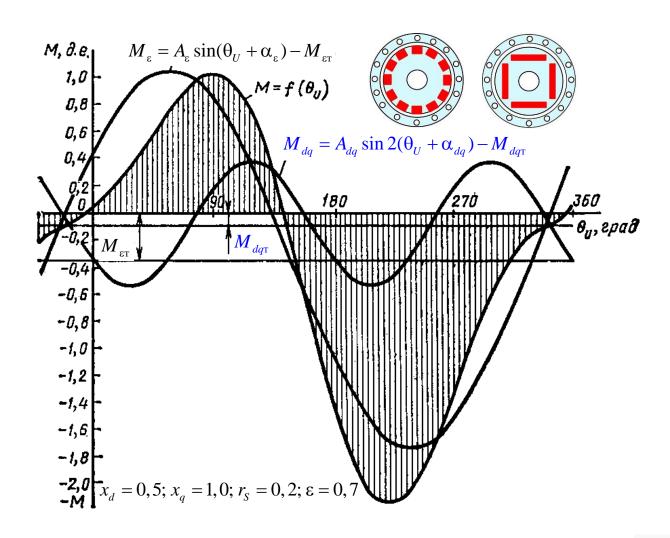
» $M_{dq^{\mathrm{T}}}$ становится заметен лишь у СД с большим $r_{\scriptscriptstyle S}$

Реактивный момент изменяется по закону \sin от двойного угла θ_U Но за счет r_S синусоида смещается влево на угол α_{dq} и вниз на M_{dqr}

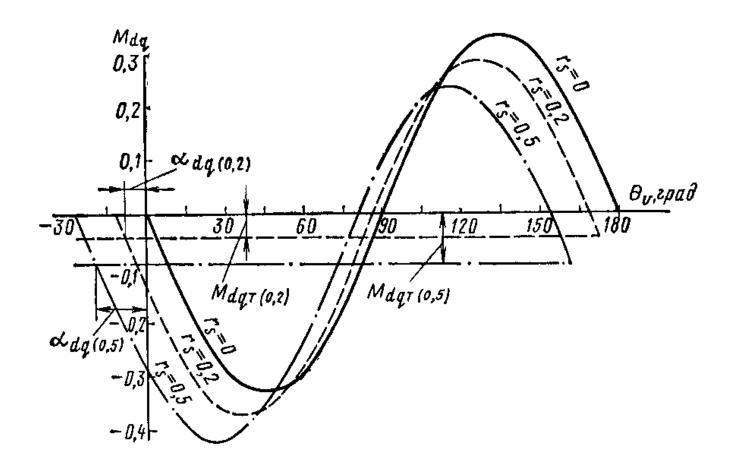
Вращающий момент при $x_d > x_q$



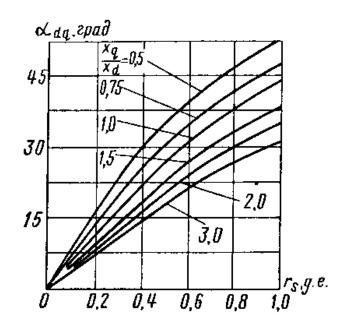
Вращающий момент при $x_d < x_q$



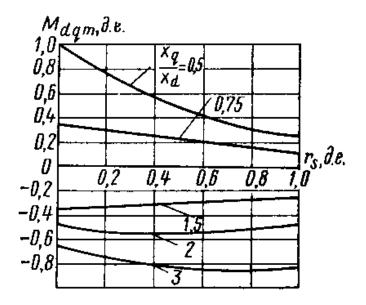
Кривые реактивного момента M_{dq} при различных r_{S} для СД с $x_{d} < x_{q}$



Угол смещения синусоиды α_{dq} в зависимости от r_S для разных СД



Величина максимального реактивного момента M_{dqm} в зависимости от $\underline{r_S}$ для разных СД



Результирующий момент

Итого, суммарный (результирующий) вращающий момент синхронного микродвигателя с возбужденными явновыраженными полюсами

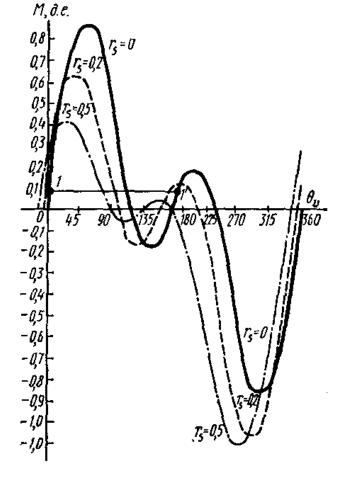
$$\begin{split} M &= M_{\varepsilon} + M_{dq} = A_{\varepsilon} \sin\left(\theta_{U} + \alpha_{\varepsilon}\right) + A_{dq} \sin2\left(\theta_{U} + \alpha_{dq}\right) - M_{\mathrm{T}} \\ \text{где} \quad A_{\varepsilon} &= \frac{mU^{2}\varepsilon}{\Omega_{c}\left(r_{s}^{2} + x_{d}x_{q}\right)^{2}} \sqrt{\left(x_{d}x_{q}^{2} - r_{s}^{2}x_{q} + 2r_{s}^{2}x_{d}\right)^{2} + r_{s}^{2}\left(2x_{q}^{2} + r_{s}^{2} - x_{d}x_{q}\right)^{2}} \\ \quad tg \, \alpha_{\varepsilon} &= \frac{r_{s}\left(2x_{q}^{2} + r_{s}^{2} - x_{d}x_{q}\right)}{x_{d}x_{q}^{2} - r_{s}^{2}x_{q} + 2r_{s}^{2}x_{d}} \\ \quad A_{dq} &= \frac{mU^{2}(x_{d} - x_{q})}{2\Omega_{c}\left(r_{s}^{2} + x_{d}x_{q}\right)^{2}} \sqrt{\left(x_{d}x_{q} - r_{s}^{2}\right)^{2} + r_{s}^{2}\left(x_{d} + x_{q}\right)^{2}} \\ \quad M_{\mathrm{T}} &= \frac{mU^{2}r_{s}}{\Omega_{c}\left(r_{s}^{2} + x_{d}x_{q}\right)^{2}} \left[\varepsilon^{2}\left(r_{s}^{2} + x_{q}^{2}\right) + \frac{\left(x_{d} - x_{q}\right)^{2}}{2}\right] \end{split}$$

При увеличении r_S синусоиды смещаются влево (на $lpha_{arepsilon}$ и вниз (на $M_{arepsilon ext{T}}$ и $M_{dq ext{T}}$)

Результирующий момент

Если при слабой намагниченности амплитуда электромагнитного момента M_{ϵ} соизмерима с амплитудой реактивного момента $M_{dq'}$ в результирующей кривой появляются две зоны устойчивой работы: рабочие точки 1 и 1' при разных углах нагрузки θ_U \rightarrow проблемы с синфазным вращением нескольких СД

$$M = A_{\varepsilon} \sin(\theta_U + \alpha_{\varepsilon}) + A_{dq} \sin(2(\theta_U + \alpha_{dq}) - M_{\tau})$$



СД с неявновыраженными полюсами

В СД с неявновыраженными полюсами $x_d = x_q = x_{\rm c}$

Уравнение баланса напряжений

$$\dot{U} = -\dot{E}_0 + j\dot{I}x_c + \dot{I}r_S = -\dot{E}_0 + \dot{I}Z_c$$

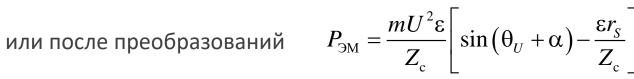
где $Z_{
m c}=r_{
m S}+jx_{
m c}$ – полное синхронное сопротивление СД

Воспользуемся готовыми выражениями, подставив в них $x_d = x_q = x_{
m c}$

Полный ток статора
$$I = \frac{U}{Z_c} \sqrt{1 - 2\varepsilon \cos \theta_U + \varepsilon^2}$$

Потребляемая мощность
$$P_S = \frac{mU^2}{r_S^2 + x_c^2} \Big[r_S + \varepsilon \big(x_c \sin \theta_U - r_S \cos \theta_U \big) \Big]$$

Электромагнитная мощность
$$P_{\text{ЭМ}} = \frac{mU^2 \varepsilon}{r_{\text{S}}^2 + x_{\text{c}}^2} \left[\left(x_{\text{c}} \sin \theta_U + r_{\text{S}} \cos \theta_U \right) - \varepsilon r_{\text{S}} \right]$$



 $P_{
m 3M} = rac{mU^2 arepsilon}{Z_{
m c}} \left[\sin \left(heta_U + lpha
ight) - rac{arepsilon r_S}{Z_{
m c}}
ight]$ где фазовый сдвиг lpha определяется как $ext{tg} \, lpha = rac{r_S}{x_{
m c}}$

Вращающий момент
$$M_{\rm c} = \frac{mU^2 \varepsilon}{\Omega_{\rm c} Z_{\rm c}} \left[\sin(\theta_U + \alpha) - \frac{\varepsilon r_S}{Z_{\rm c}} \right] = M_{\rm c}' - M_{\rm ct}$$

Угловая характеристика — синусоида, смещенная влево на lpha и вниз на $M_{
m cr}$

СД с неявновыраженными полюсами

По формуле вращающего момента
$$M_{\rm c} = \frac{mU^2 \epsilon}{\Omega_{\rm c} Z_{\rm c}} \left[\sin \left(\theta_{\rm U} + \alpha \right) - \frac{\epsilon r_{\rm S}}{Z_{\rm c}} \right]$$

найдем максимальный момент

$$M_{\mathrm{c}_{m}}=rac{mU^{2}arepsilon}{\Omega_{\mathrm{c}}Z_{\mathrm{c}}}\Bigg[1-rac{arepsilon r_{\mathrm{S}}}{Z_{\mathrm{c}}}\Bigg]$$
 — при угле $heta_{U}+lpha=90^{\circ}$ или $\mathrm{tg}\, heta_{U_{m}}=\mathrm{tg}(90^{\circ}-lpha)=\mathrm{ctg}\,lpha=rac{x_{\mathrm{c}}}{r_{\mathrm{S}}}$

Производную максимального момента по ε приравняем нулю и найдем степень возбужденности ротора, обеспечивающую максимально возможный максимальный момент

$$\varepsilon_{M_{cm}} = \frac{Z_{c}}{2r_{S}} \qquad M_{cmax} = \frac{mU^{2}}{4\Omega_{c}r_{S}}$$

Максимальный момент (и максимальная $P_{\ni M}$) оптимально возбужденного СД не зависит от x_c $(x_c$ влияет на угол нагрузки θ_U , при котором достигается максимум момента)

На практике степень возбужденности ϵ выбирают так, чтобы

- получить наибольшее значение максимального момента
- получить максимальный КПД
- получить требуемый соѕф
- получить хорошие пусковые свойства

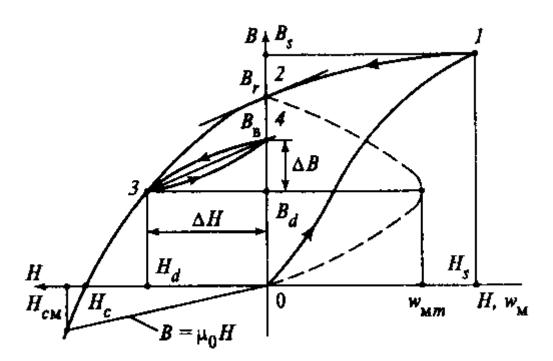
(требуется оптимизация)

Для синхронных микродвигателей

ПМ – предварительно намагниченное ферромагнитное тело, сохраняющее остаточную намагниченность и служащее источником постоянного магнитного поля

Материал ПМ — магнитотвердый сплав с малым $\mu_{\text{пм}} = (1...25)\mu_0$, широкой петлей гистерезиса и большим эл. сопротивлением $\rho_{\text{пм}} = (0,5...1,8)\cdot 10^{-6}$ Ом·м ($\rho_{\text{Cu}} = 0,02\cdot 10^{-6}$ Ом·м)

Основная характеристика магнитного материала — петля гистерезиса B(H)



Намагничивание ПМ — внешним магнитным полем (пост. или переменный ток — импульсное намагничивание) до выхода на предельную петлю гистерезиса — т.1

 B_{S} – индукция насыщения

 B_r — остаточная индукция (после снятия намагничивания, в т.2 при H=0)

 H_c – коэрцитивная сила (по индукции)

— напряженность внешнего размагничивающего поля, обеспечивающая B=0 в ПМ

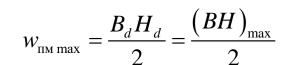
 $H_{\scriptscriptstyle CM}$ – коэрцитивная сила (по намагниченности)

 напряженность внешнего размагничивающего поля, обеспечивающая полное размагничивание ПМ

 $\mu_{\scriptscriptstyle ext{IIM}}$ – магнитная проницаемость ПМ (разная при разных H)

$$\mu_{\text{\tiny IIM}} = \frac{dB}{dH}$$

$$w_{\scriptscriptstyle \Pi M}$$
 – удельная магнитная энергия ПМ $w_{\scriptscriptstyle \Pi M}$



После снятия намагничивания \rightarrow ПМ находится в т.2

При приложении размагничивающей МДС (внешняя F или $U_{\mathfrak{u}}$ в немагнитном зазоре)

 \rightarrow ПМ переходит в т.3

После снятия внешней МДС

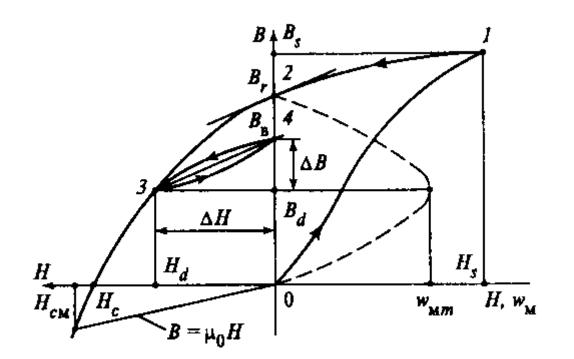
 \rightarrow ПМ возвращается по частичной петле гистерезиса в т.4 (обычно упрощают до прямой 3-4): $B_4 < B_r$

Если в процессе работы внешнее поле не превышает H_3

 \rightarrow ПМ перемагничивается по прямой 3-4 – «линия возврата»)

При более сильном размагничивании (реакция якоря при КЗ)

ightarrow переход на другую линию возврата вплоть до полного размагничивания при H_{c}

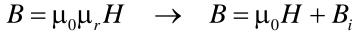


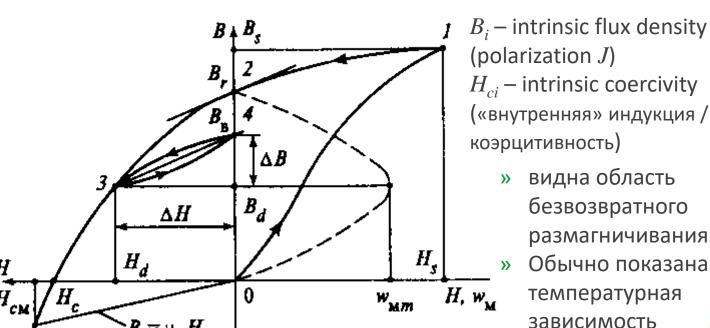
После первоначального намагничивания – «стабилизация» ПМ

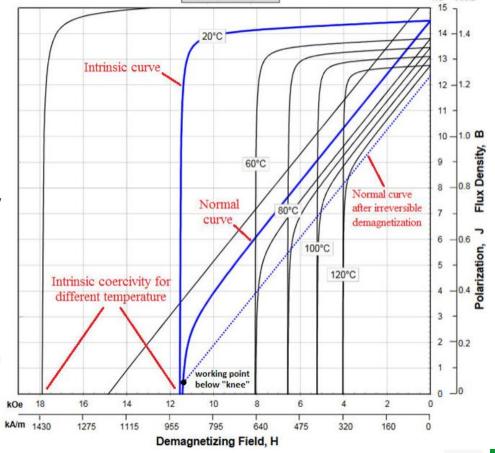
ightarrow размагничивание до H_d , которая гарантированно больше H при работе \ni М

(желательно в т.3, где максимальная $w_{\scriptscriptstyle {\rm IIM}}$)

В англоязычной литературе используют другое представление







Material: N52

Работа постоянных магнитов в электрической машине

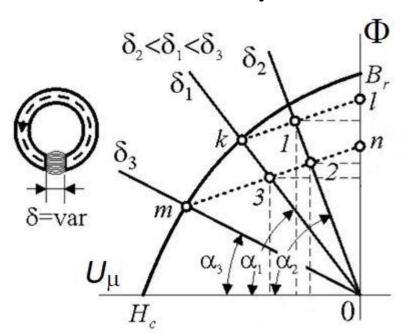
Рассмотрим тороид из магнитотвердого материала, намагниченный до состояния насыщения

При снятии внешнего намагничивания индукция в материале равна B_{r}

По закону полного тока $\oint H dl = H_{\rm M} l = 0$ Т.е. U_{μ} и напряженность поля в магните $H_{\rm M} = 0$ (а индукция $B = B_r$) (при этом удельная энергия магнита BH/2 = 0, внешнее поле не создается)

Если создать зазор δ , в нем возникнет магнитное поле с напряженностью H_{δ}

По закону полного тока $\oint H dl = H_{_{\delta}} \delta + H_{_{\mathrm{M}}} l = 0$ или $U_{_{\mu\delta}} + U_{_{\mu\mathrm{M}}} = 0$



Т.е. U_{μ} в магните $U_{\mu \rm M} = -U_{\mu \delta} \neq 0$ и напряженность $H_{\rm M} = -H_{\delta} \delta/l$ Что соответствует рабочей точке k на кривой размагничивания При этом индукция $B_k < B_r$ (происходит размагничивание)

(если затем зазор δ уменьшить до нуля, напряженность станет $H_{_{\mathrm{M}}}=0$, но рабочая точка переместится по прямой возврата в точку l)

Точка k — пересечение кривой размагничивания с характеристикой воздушного зазора — прямой линией под углом α

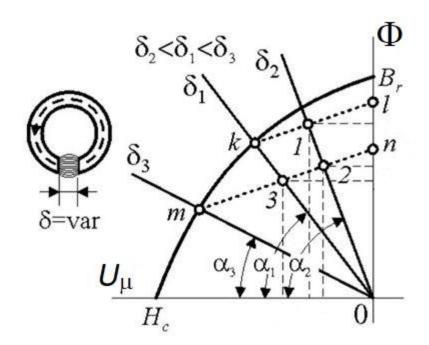
где
$$\operatorname{tg} \alpha = \frac{\Phi_\delta}{U_{\scriptscriptstyle \mathsf{II}\delta}} = \frac{B_\delta S_\delta}{H_\delta \delta} = \mu_0 \, \frac{S_\delta}{\delta} = \Lambda_\delta$$
 Действительно, по закону Ома: $\Phi_\delta = \Lambda_\delta U_{\scriptscriptstyle \mathsf{II}\delta}$

Чем больше δ , тем меньше проводимость зазора Λ_{δ} , тем меньше угол наклона кривой α , тем сильнее размагничивание ПМ

Работа постоянных магнитов в электрической машине

При этом важна последовательность размагничивания магнита

- » Если вначале создан зазор δ_1 , то рабочая точка по кривой размагничивания в т. k
- » Если затем уменьшить зазор до δ_2 , то рабочая точка по прямой возврата kl в т. 1
- » Если затем увеличить зазор до $\delta_{ exttt{3}}$, то рабочая точка по кривой размагничивания в т. m
- » Если опять уменьшить зазор до δ_1 , то рабочая точка по прямой возврата mn-в т. 3
- » Если далее уменьшить зазор до δ_2 , то рабочая точка по прямой возврата mn в т. 2

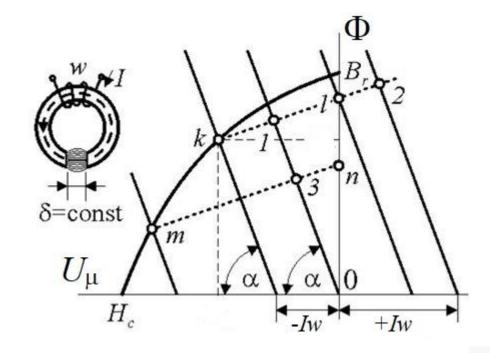


Магнитная проводимость зазора в тороиде моделирует полную магнитную проводимость всей магнитной цепи ЭМ (в основном в зазоре)

Работа постоянных магнитов в электрической машине

Теперь добавим обмотку с числом витков w и током I (модель МДС реакции якоря) МДС обмотки Iw создает магнитное поле согласно или встречно с полем магнита По закону полного тока теперь $H_\delta \delta + H_{_M} l = Iw$ К U_μ поля в магните $U_{\mu \mathrm{M}} = H_\delta \delta$ теперь добавляется МДС внешнего намагничивания $F_w = Iw$ (+ или -) смещая характеристику намагничивания воздушного зазора параллельно на величину F_w

- » Если увеличивать ток, намагничивая тороид, индукция растет по прямой возврата kl
- » При МДС $F_w = Iw = H_\delta \delta$ рабочая точка из т. 1 придет в т. l (можно дойти до B_r и B_S)
- » Обычно в ЭМ МДС якоря размагничивающая и - $F_{\scriptscriptstyle W}$ смещает характеристику влево
- » Размагничивание происходит по прямой возврата kl до т. k
- » При дальнейшем размагничивании рабочая точка смещается по кривой размагничивания (например, до т. m)
- » После такого размагничивания рабочей становится прямая возврата mn (по ней и надо в дальнейшем рассчитывать магнитную цепь ЭМ с ПМ)



1940-e - 1960-e

<u>Литые сплавы</u> на основе *Fe-Ni-Al* (+Cu, Co, Ti, Nb) – ЮНДК / *AlNiCo*

Давно выпускаются, есть множество вариантов

- » $B_r 0.5...1,4$ Тл
- » H_c 40...150 кА/м
- $\mu_{\text{IIM}} 2...5 \mu_0$
- » $W_{\text{пм}} 4...40 \text{ кДж/м}^3$

- » стабильность магнитных параметров (температурный коэф-т -0,02 %/°C)
- » рабочая температура до 520°C (t° Кюри до 900°C)
- » устойчивость против структурного старения
- » нелинейная кривая намагничивания
- высокая твердость, хрупкость, склонность к трещинам и сколам (невозможна механическая обработка, только литье + шлифовка)
- » могут быть изотропными или анизотропными

1950-е

<u>Ферриты</u> на основе ферритов бария и стронция ($BaO+6Fe_2O_3$ / $SrO+6Fe_2O_3$)

Керамика по технологии порошковой металлургии

»
$$B_r - 0,2...0,4$$
 Тл

»
$$H_c - 120...270 \text{ KA/M}$$

»
$$\mu_{\text{IIM}} - 1,3...2 \mu_0$$

»
$$W_{\text{пм}} - 5...15 \text{ кДж/м}^3$$

- » низкая цена
- » в среднем больше B_r , но меньше H_c (чем у ЮНДК)
- » сильная зависимость B_r от температуры
- >> рабочая температура до 400°
- » высокое $\rho_{\text{пм}}$ (нет потерь от вихревых токов)
- » могут быть изотропными или анизотропными

1970-е

Редкоземельные магниты самарий-кобальт (SmCo)

Большая плотность магнитной энергии

- » $B_r 0.8...0.9$ Тл
- » H_c 500...600 кА/м
- » $\mu_{\text{IIM}} 1,1...1,3 \; \mu_0$
- » $W_{\text{пм}} 55...80 \text{ кДж/м}^3$

- » сложная технология
- » дорогие материалы
- » самая высокая цена ПМ
- » линейная кривая намагничивания
- » рабочая температура до 350°
- » стабильность магнитных параметров

1980-е

Редкоземельные магниты неодим-железо-бор (NdFeB)

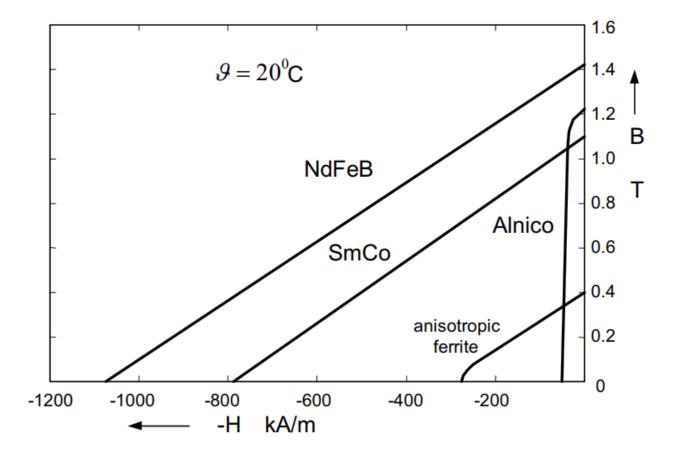
Еще больше плотность магнитной энергии

- » $B_r 1,1...1,2$ Тл
- » H_c 600...900 кА/м
- » $\mu_{\text{IIM}} 1,05...1,1 \; \mu_0$
- » $W_{\text{пм}} 100...150 \text{ кДж/м}^3$

- » производство дешевле SmCo
- » прочность выше, чем у SmCo
- » магнитные свойства лучше ${
 m SmCo}$, но только при комнатной t°
- » при повышении t° быстро теряют намагниченность
- $^{\circ}$ рабочая температура до 150°
- » склонность к коррозии (кислота, щелочь, вода, водород, радиация)
 - ightarrow требуется защитное покрытие и аккуратная установка

Сравнение магнитных материалов

- » ЮНДК / Alnico
- » Ферриты
- » SmCo
- » NdFeB



Далее

Синхронные микродвигатели

- ▲ Ширинский С.В. каф. ЭМЭЭА, НИУ «МЭИ»
- ShirinskiiSV@mpei.ru
- % https://e-200.ru/EMAU/



