
Лабораторная работа №4

Моделирование на ЭВМ четного и нечетного полей в области паза

Расчет магнитного поля в области паза с током с учетом влияния токов остальных пазов машины при некоторых допущениях можно свести к решению двух симметричных полевых задач — о поле в области паза с током при отсутствии токов во всех остальных пазах и об униполярном поле в области паза без тока, созданном токами всех остальных пазов. Эти поля получили названия нечетного и четного.

Четное (слева) и нечетное (справа) магнитные поля в области паза электрической машины.

На лекциях аналитические решения этих двух полевых задач были получены методом конформных преобразований. При этом задачи были сформулированы в терминах скалярного магнитного потенциала. В лабораторной работе расчет полей производится на конечно-элементных моделях с использованием векторного магнитного потенциала, что следует учесть при описании граничных условий. В работе предлагается оценить точность моделирования, а также влияние некоторых допущений, принятых при аналитическом решении.

Программа работы

п.1. По данным таблицы построить область задачи:

В таблице обозначено:

Зубцовое деление, мм

Вариант		*.1			*.*.1				
	t _z , mm	δ, мм		b _п , мм	h _п , мм		b пр, мм	h пр, мм	Δ_{H3} , MM
1	70	10	8	30	140	120	20	110	5
2	90	10	12	40	140	150	30	110	5
3	100	15	13	45	180	160	35	135	5
4	100	10	8	40	90	110	30	80	5
5	80	5	7	30	120	100	22	100	4
6	70	10	12	30	140	130	20	125	5
7	100	15	11	45	180	160	35	65	5
8	80	5	3	30	90	110	22	78	4

п.2. Смоделировать нечетное поле в области паза

- <u>п. 2.1.</u> Обосновать задание граничных условий для векторного магнитного потенциала.
- <u>п. 2.2.</u> Смоделировать нечетное поле, задавая плотность тока на всем поперечном сечении проводника (выбрать реальное значение плотности тока).

По результатам моделирования:

п. 2.2.1. – Найти магнитный поток, приходящийся на участок гладкого сердечника шириной в половину зубцового деления (от оси паза до оси зубца).

- п. 2.2.2. Построить распределение индукции на участке поверхности гладкого сердечника, указанном в п. 2.2.1. Рассчитать и построить график зависимости $\beta_s(x)$.
 - п. 2.2.3. Построить распределение индукции по стенкам паза.
- <u>п. 2.3.</u> Смоделировать нечетное поле, считая, что ток паза сосредоточен в тонком токовом слое (толщиной 1 мм), расположенном на дне паза. (значение пазового тока сохранить).

По результатам моделирования выполнить то же, что в п.п. 2.2.1. – 2.2.3.

- п.3. Смоделировать четное (униполярное) поле в области паза
- <u>п. 3.1.</u> Определить граничные условия для векторного магнитного потенциала, обеспечивающие под серединами зубцов то же значение индукции, что и для нечетного поля.

По результатам моделирования выполнить то же, что в п.п. 2.2.1. – 2.2.3. (график строить для функции $\beta_c(x)$).

- п.4. <u>По результатам, полученным в п.п. 2 и 3, найти разностную проводимость θ .</u>
- <u>п. 4.1.</u> Оценить погрешность определения $\underline{\theta}$ для каждого из двух способов задания тока паза.
- п.5. <u>По результатам п. 2 найти коэффициент воздушного зазора (коэффициент Картера)</u>. Оценить погрешность определения k_{δ} .
 - п.б. Оформить отчет о выполненной работе.
 - п. 6.1. Изобразить область задачи, указав характерные размеры.
- <u>п.6.2.</u> Обосновать задание граничных условий для каждой из решенных полевых задач.
- <u>п. 6.3.</u> Сделать заключение о точности моделирования, сравнив результаты моделирования с расчетом по аналитическим формулам.
 - п. 6.4. Сделать общие выводы по работе.