Лабораторная работа №8

Конформные преобразования. Нечетное поле паза

Предварительные замечания

Анализ поля в зоне раскрытия паза важен как для построения общей теории электрических машин, так и для разработки теории универсального метода расчета [1], первоначально названного методом зубцовых контуров [2]. Поле рассматривается на одном зубцовом делении сердечника при допущении бесконечной магнитной проницаемости стали и отсутствия пазов на противоположном сердечнике. При произвольных граничных условиях, т.е. при произвольно заданных значениях скалярного магнитного потенциала зубцов, ограничивающих рассматриваемый паз, задача не имеет аналитического решения. Однако в этом случае поле может быть представлено в виде суммы двух симметричных составляющих — *четного поля*, созданного источниками, внешними по отношению к рассматриваемому пазу (можно сказать, токами всех других пазов сердечника), и *нечетного поля*, созданного током рассматриваемого паза в предположении, что других источников поля нет. Смысл разложения заключается в том, что обе полевые задачи, соответствующие каждому из таких полей, могут быть решены аналитически.

При этом решении используется конформное преобразование исходной области, имеющей на плоскости оригинала z вид вырожденного четырехугольника, на верхнюю полуплоскость плоскости отображения t. Границы исходного четырехугольника, две вершины которого расположены в бесконечности, отображаются при этом на вещественную ось плоскости t. Перенесение заданных граничных условий из плоскости z в плоскость t приводит в случае четного поля к задаче о двух намагниченных пластинах, а в случае нечетного поля к задаче о поле линейного тока на поверхности плоского сердечника. Функция преобразования координат находится в результате решения дифференциального уравнения Шварца-Кристоффеля и имеет следующий вид:

$$z = \frac{2\delta}{\pi} \left[\frac{1}{\sqrt{a}} \operatorname{arctg} \left(\frac{\eta}{\sqrt{a}} \right) + \operatorname{arth} (\eta) \right] = f(t), \tag{1}$$

где $\eta = \sqrt{\frac{t-a}{t+1}}$, $a = \left(\frac{\delta}{b}\right)^2$, δ — воздушный зазор между сердечниками, b —

половина ширины паза.

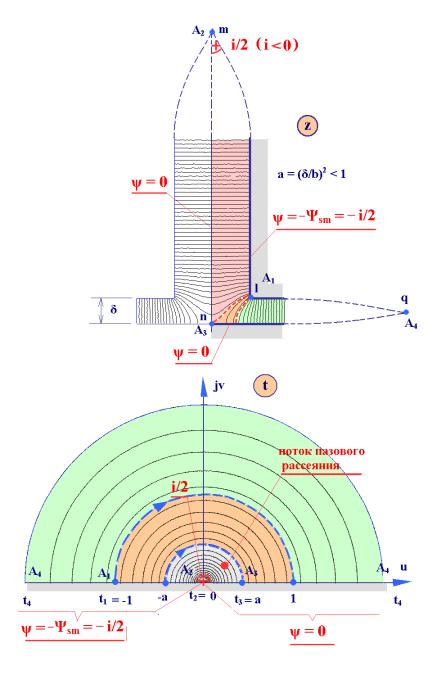


Рис. 1. Конформное преобразование области паза и картины поля, полученные в результате решения задачи о нечетном поле паза

На рис. 1, в верхней его части, показан исходный четырехугольник $A_1A_2A_3A_4$, вершины A_2 и A_4 которого расположены в бесконечности (их коор-

динаты на комплексной плоскости z: $0 + j\infty$ и $\infty + j0$). При рассмотрении нечетного поля в вершине A_2 должен быть задан ток паза.

Покажем с помощью конечно-элементных моделей, что между полем в четырехугольнике $A_1A_2A_3A_4$ и полем верхней полуплоскости t, на которую он отображается, имеется соответствие, определяемое конформным преобразованием (1). Заметим только, что с учетом $\operatorname{arth}(\eta) = \frac{1}{2} \ln \frac{1+\eta}{1-\eta}$, функция преобразования может быть представлена и в таком виде:

$$z = \frac{2\delta}{\pi} \left[\frac{1}{\sqrt{a}} \operatorname{arctg} \left(\frac{\eta}{\sqrt{a}} \right) + \frac{1}{2} \ln \frac{1+\eta}{1-\eta} \right] = f(t)$$
 (2)

При формировании конечно-элементной модели, соответствующей исходной задаче, глубину паза зададим конечной, но достаточно большой (не менее полуторакратной ширины паза) для того чтобы исключить влияние тока, расположенного на дне паза, на распределение поля в зоне раскрытия паза. Таким же образом поступим с вершиной A_4 , расположив ее не в бесконечности, а на достаточном удалении от края зубца (на расстоянии не менее полуторакратного зазора). Однако задание конечного значения координаты точки A_4 в исходной плоскости z требует задания конечного значения координаты образа точки A_4 в плоскости t. Это значение координаты можно найти, решая уравнение преобразования координат (1) или (2). Сделать это удобно в программе MathCAD, задавая действительные значение t и постепенно приближаясь к известному значению z — заданной координате точки A_4 .

На рис. 2 показана конечно-элементная модель исходной области. Ток (равный половине тока паза) может быть задан в одной из точек на линии дна паза A_2 A_2 , либо на участке в виде полосы, расположенной вблизи дна паза. На всех границах модели, кроме участка A_4 A_4 , должно быть задано однородное условие Неймана, а на A_4 A_4 – условие Дирихле (можно задать A = 0).

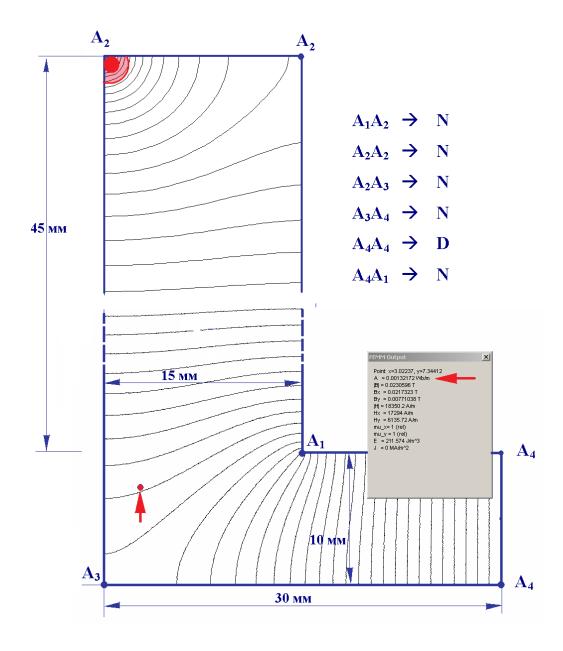


Рис. 2. Размеры и граничные условия конечно-элементной модели, картина поля, полученная в результате решения на этой модели задачи о нечетном поле паза

Модель, соответствующая конформному отображению четырехугольника $A_1A_2A_3A_4$, и полученная на ней картина поля показаны на рис. 3. Следует сказать о некоторых особенностях формирования этой модели.

Во-первых, на этой модели должны быть воспроизведены отрезки существенно различной длины: если координаты образов точек A_1 и A_3 равны соответственно -1 и a=0,444 (при формировании модели примем, что единица безразмерной координаты в плоскости t соответствует 1 мм), то коор-

дината образа точки A_4 равна 235,3 мм (результат расчета по (1)). Во-вторых, с учетом того, что поле в окрестности образов точек A_1 , A_2 и A_3 должно быть воспроизведено с наибольшей точностью, размеры конечных элементов в этой зоне следует задать достаточно малыми. В связи с этим область задачи в преобразованной плоскости разбита полуокружностями на несколько участков, в которых максимальные размеры конечных элементов изменяются от 0,01 до 5 мм. При таких условиях общее число узлов в модели получается довольно большим — более 400 тыс., что примерно на порядок больше, чем обычно рекомендуется для магнитостатических задач. Однако, поскольку рассматриваются линейные среды, такое увеличение числа узлов не приводит к недопустимому увеличению времени решения.

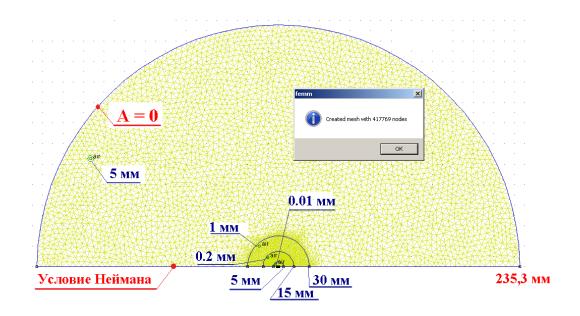


Рис. 3. Размеры и граничные условия конечно-элементной модели в преобразованной плоскости

На рис. 4 показан фрагмент полной модели, соответствующий центральной зоне (окрестности образов точек A_1 , A_2 и A_3). Там же показана произвольно выделенная точка с координатой 0,3+j0,1, для которой будет

найдена сходственная точка в плоскости z и будет произведено сравнение величин поля в сходственных точках обеих моделей

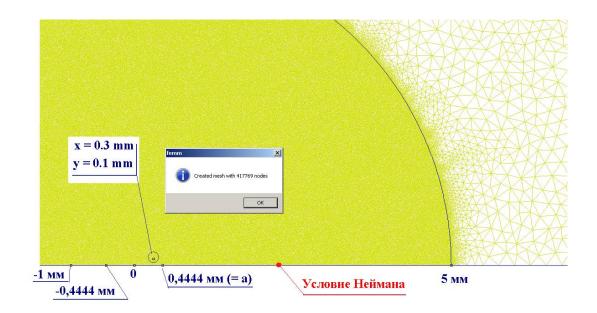


Рис. 4. Фрагмент модели, показанной на рис. 3

На рис. 5 показана картина поля, в центральной зоне модели. Значение векторного магнитного потенциала в выделенной точке равно 0,00132182 Вб/м, что менее чем на 0,05% отличается от значения векторного магнитного потенциала в сходственной точке (см. рис. 2).

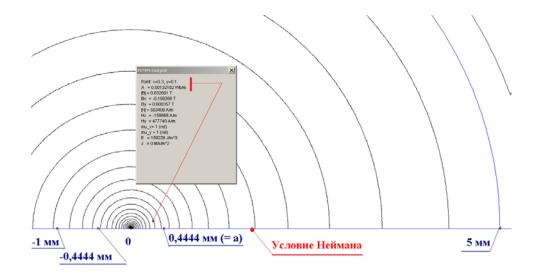


Рис. 5. Картина поля в центральной части модели в преобразованной плоскости

Сохранение значений векторного магнитного потенциала в сходственных точках объясняется тем, что при конформном преобразовании сохраняется значение комплексной потенциальной функции и, соответственно, значения ее действительной и мнимой компонент, т.е. функции потока ф, определенной, как известно, через векторный магнитный потенциал, и скалярного магнитного потенциала ф. Кстати, из сохранения значений функции потока и векторного магнитного потенциала следует, что на сходственных участках сохраняются значения потоков. В этом легко убедиться, проинтегрировав на таких отрезках нормальную составляющую индукции.

Значения напряженности поля в сходственных точках не сохраняются, поскольку для этого требовалось бы сохранение *градиента* скалярного магнитного потенциала. Однако значения напряженности поля в исходной модели (на плоскости z) могут быть рассчитаны по известным значениям тока паза (или, другими словами, разности скалярных магнитных потенциалов сердечников) и координате образа рассматриваемой точки t:

$$\left| H_{s} \right| = \left| \frac{\Psi_{sm}}{\delta} \frac{\sqrt{t - a}}{\sqrt{t + 1}} \right|,\tag{3}$$

где $\Psi_{sm} = i/2$ — скалярный магнитный потенциал зубца в задаче о нечетном поле, i — ток паза, δ — зазор между сердечниками.

Программа работы

- 1. По данным, приведенным в таблице (вариант задания указывается преподавателем) построить исходную конечноэлементную модель, соответствующую половине зубцового деления. Выполнить моделирование магнитного поля.
- 2. Рассчитать координаты характерных точек модели, являющейся конформным отображением исходной модели на верхнюю полуплоскость. Построить эту модель. Выполнить моделирование магнитного поля.

- 3. Сравнить значения векторных магнитных потенциалов в сходственных точках (координаты точек t_A в плоскости отображения указаны в таблице).
- 4. Сравнить значения магнитных потоков на сходственных участках моделей (граничные точки указаны в таблице)
- 5. По координатам точки t_H (см. таблицу) вычислить координаты сходственной точки z_H в плоскости z, вычислить значение напряженности поля в точке z_H по выражению (3) и сравнить его с измеренным значением напряженности на исходной модели.
- 6. Оценить точность моделирования, полагая за истинные значения результаты расчетов по аналитическим выражениям.
- 7. Сделать выводы и составить отчет о проделанной работе.

Вариант		1	2	3	4	5	6	7
Ширина паза, $b_{\scriptscriptstyle \Pi}$, мм		30	40	30	25	25	40	40
Зазор б, мм		10	10	8	12	8	8	12
Координата	X, MM	0,30	0,50	0,70	0,80	1,00	0,5	1,00
точки t_A	y, MM	0,10	0,10	0,08	0,10	0,07	0,05	0,08
Границы сходственных		A_4 - A_1	A_3 - A_1	A_4 - A_1	A_3 - A_1	A_4 - A_1	A_3 - A_1	A_4 - A_1
участков								
Координата	X, MM	0,3	0,70	0,80	1,00	0,5	1,00	1,00
точки t_H	y, MM	0,1	0,08	0,10	0,07	0,05	0,08	0,07

Примечание. При формировании исходной модели принять глубину паза равной полуторакратной ширине паза, а ширину зубца принять равной трем зазорам.