## министерство образования и науки российской федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

Е.В. КАЧАЛИНА С.А. КОРОБКОВ

## РАСЧЕТ МАГНИТНОЙ ЦЕПИ, ПАРАМЕТРОВ ХОЛОСТОГО ХОДА И КОРОТКОГО ЗАМЫКАНИЯ ТРАНСФОРМАТОРОВ

Методические указания

Для студентов, обучающихся по направлению «Электроэнергетика и электротехника»

## Утверждено учебным управлением НИУ «МЭИ» в качестве учебного издания

Подготовлено на кафедре электромеханики, электрических и электронных аппаратов НИУ *«МЭИ»* 

Рецензент: доктор технических наук, проф. каф. ЭМЭЭА НИУ *«МЭИ»*Беспалов В.Я.

РАСЧЕТ МАГНИТНОЙ ЦЕПИ, ПАРАМЕТРОВ ХОЛОСТОГО ХОДА И КОРОТКОГО ЗАМЫКАНИЯ ТРАНСФОРМАТОРОВ. Методические указания./ Качалина Е.В., Коробков С.А. - М.: Издательский дом МЭИ, 2017. -19 с.

Методические указания содержат задание на выполнение расчета параметров холостого хода и короткого замыкания современных силовых трансформаторов, а также рекомендации по выполнению отдельных пунктов задания и рекомендуемую литературу.

Указания предназначаются для подготовки бакалавров по направлению 13.03.02 «Электроэнергетика и электротехника»

УДК 621.314 ББК 31.261.8

© Национальный исследовательский университет «МЭИ», 2017 г.

Содержание расчетного задания соответствует программам курсов «Электрические машины» и «Электромеханика», читаемых кафедрой для институтов электротехники и электроэнергетики НИУ МЭИ.

Число и характер пунктов расчетного задания, необходимый объем расчетной работы выбраны так, чтобы тематика задания охватывала наиболее важные вопросы теории трансформаторов и общий объем работы был существенно большим, чем это предусмотрено графиком обязательных заданий. Это позволяет преподавателю составлять задание для каждой группы или для каждого студента с использованием части пунктов расчетного задания в соответствии с профилем института и специальности, а также с объемом, установленным графиком.

Для каждого студента обязательно выполнение тех пунктов расчетного задания, которые будут указаны лектором потока или преподавателем, ведущим занятия.

Основными учебными пособиями являются учебники [1—3]. При выполнении расчетов можно пользоваться книгой [4].

## Расчетное задание по трансформаторам

#### и автотрансформаторам

Для трехфазного двухобмоточного трансформатора №... из табл. 1 или 2, принимая первичной обмоткой обмотку ВН:

- 1. Определить фазные значения номинального напряжения, а также номинальный ток и его фазные значения на сторонах ВН и НН, и коэффициент трансформации (для средней ступени напряжения ВН).
- 2. Вычертить в масштабе эскиз магнитной системы и размещения на ней обмоток. Вычертить схемы соединения обмоток, обеспечивающие получение заданной группы соединения.
  - 3. Определить:
- а) массы стали стержней и ярм, потери холостого хода  $P_x$ , среднее (среднее арифметическое для трех фаз) значение тока холостого хода  $i_0$  и его активной  $i_{0a}$  и реактивной  $i_{0p}$  составляющих, а также  $\cos \varphi_0$  все величины для номинального значения напряжения  $U_{\text{ном}}$  при f = 50 Гц;
- б) приведенные к первичной обмотке параметры схемы замещения  $r_0$ ,  $x_0$  и  $z_0$  в Омах при  $U = U_{\text{ном}}$ ;
- в) рассчитать и построить характеристики холостого хода:  $P_x = f(U)$ ;  $I_0 = f(U)$  и  $\cos \varphi_0 = f(U)$ , а также графики  $I_{0a} = f(U)$  и  $I_{0p} = f(U)$  для диапазона значений U от 50 до 110% от  $U_{\text{ном}}$ ;
- г) потери холостого хода трансформатора при включении в сеть с частотой 40 и 60 Гц.
  - 4. Определить:
  - а) потери короткого замыкания  $P_{\kappa}$ ;

- б) приведенные к первичной обмотке составляющие сопротивления короткого замыкания  $r_{\kappa}$ ,  $x_{\kappa}$ ,  $z_{\kappa}$  в Омах; составляющие напряжения короткого замыкания  $u_{a}$  и  $u_{p}$ , напряжение короткого замыкания  $u_{\kappa}$  в процентах и  $\cos \varphi_{\kappa}$ ;
- в) рассчитать и построить график изменения вторичного напряжения трансформатора  $\Delta U = f(\cos\varphi_2)$  при номинальном токе. Определить  $\cos\varphi_2$ , при котором  $\Delta U$  принимает максимальное значение. Построить на одной диаграмме внешнюю характеристику  $U_2 = f(I_2)$  и график  $\Delta U = f(I_2)$  при  $\cos\varphi_2 = 1$  и  $\cos\varphi_2 = 0.7$ .
  - 5. Построить в масштабе приведенную векторную диаграмму:
- а) для одной фазы трансформатора при нагрузке номинальным током и  $\cos \varphi_2 = 0.8$ ;
  - б) то же при емкостной нагрузке  $\cos(-\varphi_2) = 0,0$ .
  - 6. Рассчитать
- а) и построить зависимость КПД от нагрузки  $\eta = f(P_2)$  при  $\cos \varphi_2 = 1$  и  $\cos \varphi_2 = 0,7$ . Определить  $P_2$ , при котором  $\eta$  приобретает максимальное значение;
- б) среднесуточный КПД для графика нагрузки № из табл. 3 при  $\cos \varphi_2 = 0.9$ .
  - 7. Для трехобмоточного трансформатора №... из табл. 4:
  - а) рассчитать фазные напряжения, линейные и фазные токи обмоток;
- б) найти параметры схемы замещения  $x_1$ ,  $x_2$ ,  $x_3$ ,  $r_1$ ,  $r_2$ ,  $r_3$ ,  $z_1$ ,  $z_2$ ,  $z_3$ , приведенные к обмотке BH;
- в) найти напряжения на зажимах вторичных обмоток СН и НН при первичной обмотке ВН, обмотке СН, нагруженной номинальным током при  $\cos \varphi_2 = 0.8$  и разомкнутой обмотке НН;
- г) построить приведенную векторную диаграмму для одной фазы трансформатора при нагрузке обеих вторичных обмоток СН и НН номинальными токами при  $\cos \varphi_2 = 0.9$  и  $\cos \varphi_3 = 0.6$ .
  - 8. Для трехфазного автотрансформатора №... из табл. 5 определить:
- а) фазные напряжения, линейные и фазные номинальные токи обмоток ВН и НН;
- б) электромагнитную (расчетную) мощность автотрансформатора и отношение этой мощности к проходной;
  - в) установившийся ток короткого замыкания для обмоток ВН и НН;
- г) коэффициент полезного действия при работе обмоток ВН и НН при  $\beta$ =1 и  $cos\phi_2$ =0,8.

Графики суточной нагрузки трансформаторов (от номинальной мощности трансформатора, %)

Таблица 3

| №   | Часы суток |     |     |     |      |       |       |       |       |       |       |       |
|-----|------------|-----|-----|-----|------|-------|-------|-------|-------|-------|-------|-------|
| п/п | 0—2        | 2—4 | 4—6 | 6—8 | 8—10 | 10—12 | 12—14 | 14—16 | 16—18 | 18—20 | 20—22 | 22—24 |
| 1   | 10         | 10  | 10  | 10  | 100  | 100   | 50    | 100   | 100   | 10    | 10    | 10    |
| 2   | 20         | 20  | 20  | 100 | 100  | 100   | 100   | 70    | 100   | 100   | 100   | 20    |
| 3   | 60         | 60  | 60  | 100 | 100  | 100   | 80    | 100   | 100   | 100   | 100   | 60    |
| 4   | 20         | 20  | 20  | 40  | 40   | 10    | 10    | 10    | 100   | 100   | 70    | 50    |
| 5   | 10         | 10  | 10  | 30  | 50   | 50    | 30    | 60    | 100   | 100   | 70    | 70    |
| 6   | 40         | 20  | 20  | 100 | 100  | 80    | 80    | 100   | 100   | 100   | 80    | 60    |
| 7   | 30         | 30  | 50  | 50  | 50   | 40    | 40    | 50    | 100   | 100   | 80    | 50    |
|     |            |     |     |     |      |       |       |       |       |       |       |       |

 $\it Taблица~4$  Основные данные силовых трехфазных трехобмоточных трансформаторов с масляным охлаждением

| №         | Осно           | Характеристики         |       |       |       |                   |                   |                   |            |            |                |                |        |
|-----------|----------------|------------------------|-------|-------|-------|-------------------|-------------------|-------------------|------------|------------|----------------|----------------|--------|
| $\Pi/\Pi$ | Мощность, кВ·А | Напряжения обмоток, кВ |       |       |       |                   | Кор               | отког             | о замь     | Холостог   | Холостого хода |                |        |
|           | C              | T T                    | īī    |       | TT    | ПОТ               | гери, і           | кВт               | нап        | ряжен      | ия, %          | потери, кВт    | ток, % |
|           | S              | $U_1$                  | $U_2$ | $U_3$ | $U_3$ | P <sub>k,12</sub> | P <sub>k,13</sub> | P <sub>k,23</sub> | $u_{k,12}$ | $u_{k,13}$ | $u_{k,23}$     | P <sub>x</sub> | $I_0$  |
| 1         | 6300           | 11                     | 15 38 | 3.5   | 11.0  | 52                | 50                | 46                | 10.5       | 17.0       | 6.0            | 12.5           | 1.10   |
| 2 3       | 10000          |                        |       | 3.5   | 11.0  | 76                | 75                | 60                | 10.5       | 17.5       | 6.5            | 17.0           | 1.10   |
| 3         | 16000          | 11                     | 15 38 | 3,5   | 11,0  | 100               | 105               | 90                | 10,5       | 17,5       | 6,5            | 21,0           | 0,80   |
| 4         | 25000          | 1 1                    | 15 38 | 3,5   | 11,0  | 140               | 130               | 120               | 10,5       | 17,5       | 6,5            | 28,5           | 0,70   |
| 5         | 40000          | 1 1                    | 15 38 | 3,5   | 11,0  | 200               | 220               | 150               | 10,5       | 17,5       | 6,5            | 39.0           | 0,60   |
| 6         | 63000          | 1.1                    | 15 38 | 3,5   | 6,6   | 290               | 280               | 260               | 10,5       | 18,0       | 7,0            | 53,0           | 0,55   |
| 7         | 80000          | 11                     | 15 38 | 3,5   | 6,6   | 365               | 380               | 320               | 11,0       | 18,5       | 7,0            | 64,0           | 0,50   |
| 8         | 16000          | 15                     | 58 38 | 3,5   | 6,6   | 96                | 100               | 90                | 10,5       | 18,0       | 6,0            | 21,0           | 1.0    |
| 9         | 25000          | 15                     | 58 38 | 3,5   | 11,0  | 145               | 140               | 120               | 10,5       | 18,0       | 6,0            | 29,0           | 0,9    |
| 10        | 32000          |                        |       | 3.5   | 11.0  | 185               | 180               | 165               | 10.5       | 18.0       | 6.0            | 44.0           | 0.8    |
| 11        | 63000          | 15                     | 58 38 | 3,5   | 11.0  | 285               | 240               | 220               | 10,5       | 18,0       | 6.0            | 56.0           | 0.7    |
| 12        | 25000          | 23                     | 30 38 | 3,5   | 6,6   | 130               | 135               | 105               | 12,5       | 20,0       | 6,5            | 45,0           | 0,9    |
| 13        | 40000          | 23                     |       | 3,5   | 11,0  | 220               | 200               | 170               | 12,5       | 22,0       | 9,5            | 54.0           | 0,55   |
| 14        | 63000          |                        |       | 3,5   | 11,0  | 320               | 300               | 280               | 12,5       | 24,0       | 10,5           | 75,0           | 1.0    |

#### Примечания:

<sup>1.</sup> Схемы и группы соединений всех трансформаторов таблицы  $Y_H/Y_H/Д$ —O—11—11.

<sup>2.</sup> Номинальные мощности обмоток ВН, СН и НН всех трансформаторов относятся как 100: 100:100.

Основные данные силовых трехфазных автотрансформаторов для высоковольтных сетей

| <b>№</b><br>П/П | Проходная мощность, | Напряже | ния обмоток,<br>кВ | <i>и</i> <sub>к</sub><br>ВН— НН, | Потери $\kappa_3 P_{\kappa}$ , | Потери<br>хх Р <sub>х</sub> , |
|-----------------|---------------------|---------|--------------------|----------------------------------|--------------------------------|-------------------------------|
|                 | кВ∙А                | ВН      | НН                 | %                                | кВт                            | кВт                           |
| 1               | 63000               | 230     | 121                | 11,0                             | 200                            | 37                            |
| 2               | 125000              | 230     | 121                | 11,0                             | 315                            | 65                            |
| 3               | 200000              | 230     | 121                | 11,0                             | 430                            | 105                           |
| 4               | 250000              | 230     | 121                | 11,0                             | 500                            | 120                           |
| 5               | 125000              | 330     | 115                | 10,0                             | 345                            | 100                           |
| 6               | 200000              | 330     | 115                | 10,5                             | 560                            | 155                           |
| 7               | 250000              | 330     | 158                | 10,5                             | 620                            | 160                           |
| 8               | 400000              | 330     | 158                | 10,0                             | 720                            | 180                           |
| 9               | 250000              | 500     | 121                | 13,0                             | 690                            | 200                           |
| 10              | 500000              | 500     | 230                | 12,0                             | 1050                           | 220                           |

Примечания:

- 1. Потери и напряжения короткого замыкания отнесены к проходной мощности.
- 2. Напряжения короткого замыкания отнесены к большему из напряжений сети.
- 9. Заданный трансформатор включается на параллельную работу с трансформатором, имеющим те же номинальные мощность и напряжения, группу и схему соединения и другие параметры, а напряжение короткого замыкания на 10% выше, чем у заданного трансформатора:
- а) найти распределение общего тока нагрузки между трансформаторами при изменении общей нагрузки от 0 до  $S'_{\text{HOM}} + S''_{\text{HOM}}$ , где  $S'_{\text{HOM}}$  номинальные мощности трансформаторов;
- б) определить максимальную допустимую мощность установки при условии, что ни один из трансформаторов не должен перегружаться сверх своей номинальной мощности;
- в) найти распределение общего тока нагрузки и уравнительный ток между: двумя трансформаторами при нагрузке  $S' = S'_{\text{HOM}} + S''_{\text{HOM}}$  в том случае, если заданный трансформатор ошибочно включен в сеть на обмотке ВН на верхнюю ступень, т.е. на ответвление, соответствующее 105% от номинального напряжения, а второй трансформатор включен на среднюю ступень, т.е. на номинальное напряжение. Определить максимально допустимую мощность установки.
- 10. Определить наибольшее мгновенное значение тока короткого замыкания (ударный ток) и кратность этого тока по отношению к номинальному току при трехфазном коротком замыкании.
- 11. а) Найти токи в фазах первичной обмотки и смещение нулевой точки при токах  $I_a = I_{\text{ном}}$ ;  $I_B = I_c = 0$  (этот пункт выполняется для

трансформаторов № 1—5, 7, 8, 11, 12, 15, 18— 25, 28, 31 из табл. 1 и № 33—45 из табл. 2.

б) При симметричной системе первичных напряжений трансформатор нагружен только между зажимами a и b то-ком  $I_{\text{ном}}$  , сдвинутым относительно напряжения  $U_{\text{ab}}$  на угол  $\phi_0$ =30°. Найти токи в первичной обмотке (без учета намаг-ничивающего тока).

Построить треугольник вторичных приведенных напряжений и определить его сдвиг относительно первичного треугольника. Этот пункт выполняется для трансформаторов № 6, 9, 10, 13, 14, 16, 17, 26, 27, 29, 30, 32 из табл. 1, № 46—50 из табл. 2.

## Методические указания к расчетному заданию по трансформаторам и автотрансформаторам

Перед выполнением расчетного задания рекомендуется просмотреть соответствующие разделы конспекта лекций и ознакомиться с литературой, указанной в методических указаниях. Во время выполнения задания при использованиисправочных таблиц следует внимательно прочитать заголовки и все примечания к таблицам.

К пункту 1. При определении линейных и фазных значений напряжений и токов обмоток ВН и НН следует учесть схемы соединения обмоток, приведенные в табл.1 и 2. В числителе указана схема соединения обмотки ВН, в знаменателе - обмотки НН. Все трансформаторы, данные которых приведены в табл. 1 и 2, - трехфазные.

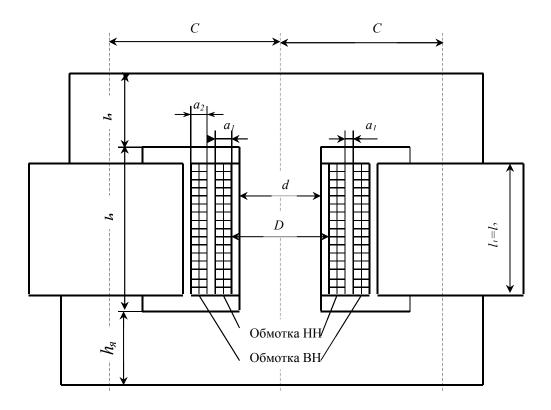



Рис. 1. Эскиз размещения обмоток.

К пункту 2. Эскиз магнитной системы и размещения на ней обмоток следует выполнить в масштабе в таком виде, как показано на рис.1 с простановкой вместо буквенных обозначений заданных размеров трансформатора. Масштаб рекомендуется выбирать таким, чтобы горизонтальный размер рисунка составлял 150-200 мм при размере листа бумаги формата А4. Отдельно следует показать обмоток ВН и НН, обеспечивающие получение схемы соединения трансформатора, заданной группы соединения обмоток топографическую диаграмму, подтверждающую соответствие полученной группы заданию [1], § 2.4; [2], § 2.8; [3], § 1.5.

K пункту 3. а) Рассчитать массу стали в трех стержнях и двух ярмах трехфазной магнитной системы, используя ее размеры из табл. 1 или 2 и принимая плотность холоднокатаной стали  $\gamma_{\rm cr} = 7650~{\rm kr/m}^3$ . Определить расчетную магнитную индукцию в стержнях  $B_{\rm c}$  и в ярмах  $B_{\rm g}$  отдельно, принимая ЭДС первичной обмотки, равной номинальному первичному напряжению (ВН). На практике принято рассчитывать потери холостого хода трансформатора, определяя их как произведение удельных потерь в единице массы,  ${\rm Bt/kr}$ , зависящих от расчетной частоты и индукции и качества стали, на массу стали соответствующей части магнитной системы. Потери рассчитываются отдельно для стержней и ярм и затем суммируются.

Добавочные возникающие потери, В магнитных системах холоднокатаной текстурованной анизотропной стали вследствие несовпадения направления вектора магнитной индукции с направлением прокатки стали, неравномерного распределения индукции в стержнях и ярмах, а также вызванные механическими воздействиями в процессе заготовки пластин стали и сборки остова трансформатора, могут быть учтены постоянным кэффициентом  $K_{\rm n}$ .

Потери холостого хода

$$P_{\rm x} = K_{\rm m} (p_{\rm c} G_{\rm c} + p_{\rm s} G_{\rm s}),$$

где  $p_c$  и  $p_s$  — удельные потери в стали стержней и ярм, определенные по табл. 6 для соответствующих индукций в стержне  $B_c$  и в ярме  $B_s$ ,  $B_t/\kappa \Gamma$ ;  $G_c$  и  $G_s$  — массы стали стержней и ярм,  $\kappa \Gamma$ .

Для плоской шихтованной магнитной системы трансформаторов мощностью 1000 кB-A и более с многоступенчатым сечением стержня и ярма, с косыми стыками в четырех углах и прямыми стыками в двух углах, собранной из отожженных пластин холоднокатаной стали марок 3404 и 3405 с толщиной пластин 0,30 и 0,35 мм (рис. 2, а) коэффициент  $K_{\Pi} = 1,40$ .

Для трансформаторов мощностью 63 - 630 кВ·А при прямых стыках в шести углах магнитной системы (рис. 2,б)  $K_{\Pi} = 1,8$ .

Удельные потери *р*, и удельная намагничивающая мощность *q*, для холоднокатаной электротехнической стали марок 3404 и 3405 толщиной 0,35 мм

Таблица 6

| Индукция<br><i>В</i> , Тл |       | ые потери<br>Вт/кг | Намагничивающая мощность $q$ , $\mathbf{B} \cdot \mathbf{A} / \mathbf{\kappa} \Gamma$ |       |  |  |  |
|---------------------------|-------|--------------------|---------------------------------------------------------------------------------------|-------|--|--|--|
|                           | 3404  | 3405               | 3404                                                                                  | 3405  |  |  |  |
| 1.00                      | 0.475 | 0.450              | 0.548                                                                                 | 0.533 |  |  |  |
| 1,20                      | 0,675 | 0,635              | 0,752                                                                                 | 0,732 |  |  |  |
| 1,30                      | 0,785 | 0,755              | 0,900                                                                                 | 0,860 |  |  |  |
| 1,40                      | 0,930 | 0,875              | 1,060                                                                                 | 1,020 |  |  |  |
| 1,50                      | 1,100 | 1,030              | 1,330                                                                                 | 1,246 |  |  |  |
| 1;52                      | 1,134 | 1,070              | 1,408                                                                                 | 1,311 |  |  |  |
| 1,54                      | 1,168 | 1,110              | 1,486                                                                                 | 1,376 |  |  |  |
| 1,56                      | 1,207 | 1,150              | 1,575                                                                                 | 1,447 |  |  |  |
| 1,58                      | 1,251 | 1,190              | 1,675                                                                                 | 1,524 |  |  |  |
| 1,60                      | 1,295 | 1,230              | 1,775                                                                                 | 1,602 |  |  |  |
| 1,62                      | 1,353 | 1,278              | 1,956                                                                                 | 1,748 |  |  |  |
| 1,64                      | 1,411 | 1,326              | 2,131                                                                                 | 1,894 |  |  |  |
| 1,66                      | 1,472 | 1,380              | 2,556                                                                                 | 2,123 |  |  |  |
| 1,68                      | 1,536 | 1,440              | 3,028                                                                                 | 2,435 |  |  |  |
| 1,70                      | 1,600 | 1,500              | 3,400                                                                                 | 2,747 |  |  |  |
| 1,72                      | 1,672 | 1,560              | 4,480                                                                                 | 3,547 |  |  |  |
| 1,74                      | 1,744 | 1,620              | 5,560                                                                                 | 4,347 |  |  |  |

Примечание: Для промежуточных значений индукции следует выполнить интерполяцию табличных данных.

Для расчета тока холостого хода рассчитывается общая намагничивающая мощность магнитной системы

$$Q_{\rm x} = K_{\rm T} (q_{\rm c} G_{\rm c} + q_{\rm g} G_{\rm g}),$$

где  $q_{\rm c}$  и  $q_{\rm s}$  — удельные намагничивающие мощности для стали стержней и ярм по табл. 6 для соответствующих значений индукции Вс  $B_{\mathfrak{q}}$  $B \cdot A/\kappa \Gamma$ . Коэффициент  $K_{\scriptscriptstyle \mathrm{T}}$ учитывает увеличение И намагничивающей мощности, вызванное воздействием упомянутых конструктивных, технологических и других факторов. Для плоской шихтованной магнитной системы вышеназванных конструкций этот коэффициент может быть принят: при мощностях 25—630 кВ·А  $K_T = 15$ —10; 1000—6300 кВ·А  $K_T = 5$ ;

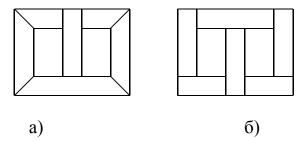



Рис. 2. Варианты плана шихтовки магнитной системы

Относительное значение тока холостого хода:

$$i_0 = \frac{Q_x}{10S};$$

активная составляющая, %

$$i_{0a} = \frac{P_{x}}{10S} \quad ;$$

реактивная составляющая, %

$$i_{0p} = \sqrt{i_0^2 - i_{0a}^2} ,$$

где  $P_{\mathbf{x}}$  измеряется в Вт,  $Q_{\mathbf{x}}$  — В·А; S — кВ·А .

Ток холостого хода может быть также определен для каждого стержня (каждой фазы обмоток) отдельно. При этом током холостого хода трансформатора считают среднее арифметическое трех токов

$$i_{\rm o} = (i_{\rm oa} + i_{\rm ob} + i_{\rm oc}) / 3.$$

Реальный ток холостого хода

$$I_{\text{oa}} = i_{\text{oa}} I_{\text{hom}} / 100$$
;  $I_{\text{op}} = i_{\text{op}} I_{\text{hom}} / 100$ ;  $I_{\text{o}} = i_{\text{o}} I_{\text{hom}} / 100$ ,

где  $I_{\text{ном}}$  — номинальный ток первичной обмотки (высшего напряжения),

$$\cos \varphi_0 = \frac{P_{\rm x}}{\sqrt{3}I_0 U_{\rm HOM}}; \quad \sin \varphi_0 = \frac{Q_{\rm x}}{\sqrt{3}I_0 U_{\rm HOM}}.$$

После определения потерь и тока холостого хода трансформатора следует полученные данные сравнить с контрольными.

Результаты расчета не должны сильно отличаться от контрольных данных.

Согласно ГОСТ отклонение потерь и тока холостого хода трансформатора от нормированного значения не должны быть больше +15% и +30% соответственно.

б) Параметры схемы замещения трансформатора рассчитываются по параметрам первичной обмотки (обмотки ВН) и получаются приведенными к этой обмотке

$$z_0 = U_{1\phi}/I_{0\phi}$$
;  $r_0 = z_0 \cos \varphi_0$ ;  $x_0 = z_0 \sin \varphi_0$ .

- [1], § 3.4; [2], § 2.6; [3], §1.4.
- в) При выполнении этого пункта следует произвести расчет значений величин по методу, указанному для п. 3, а для напряжений U=(0.5; 0.7; 0.9; 1.00 и 1.10) от  $U_{\text{ном}}$ ;
- г) Рассчитываются потери холостого хода при номинальном напряжении первичной обмотки (обмотки ВН) с учетом изменения индукции при изменении частоты. При этом

$$P_{\rm x} = P_{\rm x50} (B/B_{50})^2 (f/f_{50})^{1,3}$$

где  $P_{x50}$ ,  $B_{50}$  и  $f_{50}$  — данные при частоте 50 Гц.

K пункту 4. а) Вначале рассчитать массу металла обмотки ВН и обмотки НН, используя размеры обмоток и их числа витков, приведенные в табл. 1 или 2, и эскиз магнитной системы и размещения на ней обмоток, выполненный по п. 2. Плотность металла обмоток меди  $\gamma_{\rm M}=8900~{\rm kr/m}^3$ , алюминия

 $\gamma_a = 2700 \text{ кг/м}^3$ . Потери короткого замыкания рассчитываются для каждой обмотки и затем суммируются

$$P_{\text{och}} = P_{\text{och1}} + P_{\text{och2}}$$

Потери короткого замыкания трансформатора  $P_{\kappa}$  определяются для обмоток, имеющих номинальную эксплуатационную температуру +75°С. При определении  $P_{\kappa}$  учесть, что помимо основных (электрических) потерь в обмотках возникают добавочные потери. К потерям короткого замыкания относятся также потери в отводах (проводах) от обмоток к проходным изоляторам и переключающим устройствам, потери в стальных деталях крепления магнитной системы и в стенках бака, вызванные полем рассеяния обмоток и отводов. Все эти добавочные потери могут быть ориентировочно оценены средним коэффициентом по отношению к основным потерям, т. е.

$$P_{\kappa} = P_{\text{och}} k$$
,

где k может быть принят для трехфазных трансформаторов мощностью до 100 кВ·А—1,03; 160—630 кВ·А—1,06; 1000—6300 кВ·А— 1,12.

Основные потери при +75°C:

в медных обмотках  $P_{\text{осн.м}} = 2.4J^2G_0$ ;

в алюминиевых обмотках  $P_{\text{осн.a}} = 12,75 J^2 \text{Go}$ ,

где J— плотность тока в обмотке,  $A/mm^2$ ;  $G_0$  — масса металла

обмотки, кг.

При выводе выражения  $P_{\text{осн}}$  приняты указанные выше плотности металла обмоток и удельные электрические сопротивления при +75°C: меди  $p_{\text{м}}$ =0,02135 мкОм·м и алюминия  $p_{\text{a}}$ =0,0344 мкОм·м.

б) Для определения напряжения короткого замыкания найти активную  $r_{\kappa}$  и реактивную  $x_{\kappa}$  составляющие сопротивления короткого замыкания трансформатора  $z_{\kappa}$ . Потери короткого замыкания в трех фазах обмоток

$$P_{\rm K}=3\,I^2_{\rm HOM.\phi}\,r_{\rm K},$$

где  $r_{\kappa}$  — активное сопротивление одной фазы обмоток;  $I_{\text{ном.}\varphi}$  — номинальное значение фазного тока;

$$r_{\rm K} = \frac{P_{\rm K}}{3I_{\rm HOM, \Phi}^2}$$
, OM

$$x_{\rm K} = \frac{7.9 \, f \pi w^2 d_{12}}{l} a_{\rm p} k_{\rm p} 10^{-6} \, , \text{OM}$$

где f— частота сети,  $\Gamma$ ц; w — число витков первичной обмотки;  $d_{12}$ — средний диаметр обмоток, м  $d_{12} = D_1 + 2a_1 + a_{12};$ 

а<sub>р</sub> — приведенная ширина канала рассеяния, м

$$a_{\rm p} = a_{12} + \frac{a_1 + a_2}{3}$$
;

 $k_{\rm p}$ — коэффициент учитывающий отклонение реального поля рассеяния от идеального параллельного. Для расположения обмоток согласно рис.1  $k_{\rm p}$  может быть принят равным 0,95; l — высота обмоток, м.

Активная составляющая напряжения короткого замыкания, фазное значение

$$U_{\text{a.ф}} = I_{\text{ном.ф}} r_{\text{к}}$$
, В или  $u_{\text{a}} = (U_{\text{a.ф}} / U_{\text{ном.ф}}) 100, %$ 

Реактивная составляющая напряжения короткого замыкания, фазное значение

$$U_{\text{p.ф}} = I_{\text{ном.ф}} x_{\text{к}}$$
 В или  $u_{\text{p}} = (U_{\text{p.ф}} / U_{\text{ном.ф}}) 100,\%$ 

где  $x_{\kappa}$  — реактивное сопротивление одной фазы обмоток, Ом;

$$z_{\rm K} = \sqrt{r_{\rm K}^2 + x_{\rm K}^2}$$
;  $\cos \varphi_{\rm K} = r_{\rm K} / z_{\rm K}$ 

При расчете  $z_{\kappa}$ ,  $u_{\kappa}$  и их составляющих пользоваться фазными значениями номинального напряжения и тока первичной обмотки (обмотки ВН).

[1], § 3.5 и 3.6; [2], §2.6; [3], §1.4; [4], §7.1 и 7.2. в) [1], §4.2 [2], §2.10;; [3], §1.6;

K пункту 5. Привести все параметры трансформатора к первичной обмотке (обмотке ВН). При построении диаграммы условно считать, что  $x_1 = x_2' = x_{\rm K}/2$  и  $r_1 = r_2' = r_{\rm K}/2$ . Принять  $U_2' = U_{\rm 1 hom}$ .

[1],§ 3.3; [2], §2.3; [3], § 1.3.

K пункту 6. а) При расчете КПД для различных значений  $I_2$  следует учесть, что вместе с изменением нагрузки трансформатора при неизменном напряжении сети квадратично изменяются основные и добавочные потери в обмотках, потери, вызванные полем рассеяния обмоток и отводов в баке и крепежных конструкциях магнитной системы, а также потери в отводах. Потери в стали магнитной системы остаются практически неизменными.

б) Среднесуточный КПД равен отношению энергии, от- данной трансформатором во вторичную сеть в течение суток к энергии, полученной трансформатором за тот же период из первичной сети.

Суточный КПД может быть найден по формуле

$$\eta = 1 - \frac{(\beta_1^2 t_1 + \beta_2^2 t_2 + ... + \beta_n^2 t_n) P_{\kappa} + 24 P_{\kappa}}{\cos \varphi_2 (\beta_1 t_1 + \beta_2 t_2 + ... + \beta_n t_n) S_{\text{HOM}} + (\beta_1^2 t_1 + \beta_2^2 t_2 + ... + \beta_n^2 t_n) P_{\kappa} + 24 P_{\kappa}},$$

где  $\beta_1$ ,  $\beta_2$ ,...,  $\beta_n$  — отношение тока нагрузки к номинальному току для отрезков времени  $t_1$ ,  $t_2$ , ...,  $t_n$ , выраженных в часах;  $S_{\text{ном}}$  — номинальная мощность трансформатора, кВ·А;  $P_{\text{к}}$  и  $P_{\text{x}}$  — потери короткого замыкания и холостого хода транс-форматора, кВт. [1], § 4.3; [2], § 2.10; [3], §1.6.

K пункту 7. В табл. 4 потери и напряжение короткого замыкания даны для номинальной мощности обмотки ВН —  $S_{\text{ном}}$ . При расчете параметров схемы замещения и других данных трансформатора их приводят к числу витков обмотки ВН. Расчет сопротивлений короткого замыкания  $r_{\kappa}$ ,  $x_{\kappa}$  и  $z_{\kappa}$  для пар обмоток ВН — CH; ВН — НН и СН — НН производят как для двухобмоточного трансформатора через заданные потери и напряжение короткого замыкания

$$r_{k} = \frac{P_{_{\mathrm{K}}}}{3I_{_{\mathrm{HOM},\Phi}}^{2}}; \ z_{_{\mathrm{K}}} = \frac{u_{_{\mathrm{K}}}U_{_{\mathrm{HOM},\Phi}}}{100I_{_{\mathrm{HOM},\Phi}}}; \ x_{_{\mathrm{K}}} = \sqrt{z_{_{\mathrm{K}}}^{\ 2} - r_{_{\mathrm{K}}}^{\ 2}} \ .$$

Параметры схемы замещения  $x_1$ ,  $x_2$ ,  $x_3$ ,  $r_1$ ,  $r_2$ ,  $r_3$ ,  $z_1$ ,  $z_2$ ,  $z_3$  определяются на основании полученных  $r_{\kappa}$ ,  $x_{\kappa}$  и  $z_{\kappa}$ .

При построении векторной диаграммы трансформатора рекомендуется принять угол между токами  $I_2$  и  $I_3$  равным

 $\alpha = \phi_3 - \phi_2$  . Диаграмму построить по рис. 8.4 [1], или рис. 1.37 [3]

[1], § 8.1; [2], § 2. 12 [3], § 1.8.

К пункту 8. В табл. 5 приведены данные двухобмоточных трехфазных автотрансформаторов. Потери и напряжения короткого замыкания отнесены к большему из линейных напряжений. Схему соединения обмоток см. на рис. 3.

[1], § 8.2; [2], §2.13; [3], § 1.7; [4], § 3.2.

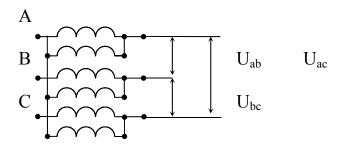



Рис. 3. Схема соединения обмоток автотрансформатора

К пункту 9. [1] § 6.1, 6.2 и 6.4; [2], § 2.11 [3], §1.9;

К пункту 10. Ударный ток короткого замыкания — наибольшее мгновенное значение тока короткого замыкания определяется по амплитудному значению тока короткого замыкания в соответствии с формулой

$$i_{\scriptscriptstyle \rm KM} = k_{\scriptscriptstyle \rm M} \sqrt{2} I_{\scriptscriptstyle \rm K.yct} \,,$$

где  $I_{\text{к.уст}} = I_{\text{ном}} 100/\text{u}_{\text{к}}$ ;  $\kappa_{\text{м}}$  —коэффициент, учитывающий апериодическую составляющую тока, который может быть принят  $\kappa_{\text{м}} = 1,55$  для трансформаторов мощностью до 630 кВ·А и  $\kappa_{\text{м}} = 1,70$  для трансформаторов мощностью 1000—6300 кВ·А;  $I_{\text{к,уст}}$  — установившийся ток короткого замыкания. [1], § 9.2; [2], § 2.6; [3], § 5.8; [4], § 7.3

К пункту 11. Для решения задачи распределения токов при несимметричной нагрузке пользуются методом симметричных Для определения сопротивления составляющих. нулевой последовательности  $z_{00}$  нужно использовать напряжение нулевой последовательности  $U_0$ , приведенное в табл. 1 или 2, которое дается в номинального напряжения нулевой процентах OT при токе последовательности, равном номинальному току:

$$U_0 = \frac{I_{\text{hom}, \phi} z_{00}}{U_{\text{hom}}} 100 \text{,OM}$$

Следует отметить, что в трансформаторах с магнитосвязанной трехфазной магнитной системой сопротивление нулевой

последовательности  $z_{00}$  значительно меньше сопротивления холостого хода  $z_0$  .

[1] § 7.1-7.4; [2], § 2.16; [3],1.10.

### Указания к оформлению расчетного задания

- 1. Расчетное задание оформляется на листах писчей бумаги формата А4.
- 2. Текст пишется чернилами или шариковой ручкой или текст может быть набран в текстовом редакторе и распечатан. В тексте необходимо приводить все использованные формулы. Полученные значения величин должны снабжаться соответствующими размерностями. При использовании табличного и справочного материала дать в тексте краткие пояснения. Вычисления могут проводиться с применением МАТНСАD или аналогичных программ.
- 3. Эскизы и графики оформляются на миллиметровой бумаге формата A4 или могут строиться в среде применяемых программных продуктов. Эскизы и графики выполняются в соответствии с Единой системой конструкторской документации (ЕСКД).
- 4. Расчетное задание брошюруется и снабжается титульным листом с указанием:
  - а) названия расчетного задания;
  - б) номера варианта и обозначение типа трансформатора;
  - в) факультета и группы, фамилии и инициалов студента.

#### ЛИТЕРАТУРА

- 1.Токарев Б.Ф. Электрические машины. М.: Энергоатомиздат, 1990, 624с.
- 2.Копылов И.П. Электрические машины. М.: Высшая школа, 2000, 627с.
- 3.Сергеенков Б.Н., Киселев В.М., Акимова Н.А. Электрические машины: Трансформаторы. М.: Высшая школа, 1989, 352с.
- 4.Тихомиров П. М. Расчет трансформаторов. М.: Издательский дом Альянс, 2009, 528c.
- 5. Беспалов В.Я., Котеленец Н.Ф. Электрические машины. М.: Издательский центр Академия, 2013, 320с.

Основные данные трехфазных двухобмоточных трансформаторов с естественным масляным охлаждением с алюминиевыми (№ 1—18) и медными (№ 19—32) обмотками

|          |              |                                               |                    |            |              |           |                 | Об                   | мотк                        |              | DIMI                 | (312 1                                                      | 10) H                                         | ИСДПВП                     | ·III (31=           |                                | оомотка<br>цечник      |                        |                       | Б                     | ак                   | I                             | Контро                         | льные                        | :                        |                                          |
|----------|--------------|-----------------------------------------------|--------------------|------------|--------------|-----------|-----------------|----------------------|-----------------------------|--------------|----------------------|-------------------------------------------------------------|-----------------------------------------------|----------------------------|---------------------|--------------------------------|------------------------|------------------------|-----------------------|-----------------------|----------------------|-------------------------------|--------------------------------|------------------------------|--------------------------|------------------------------------------|
|          | Общие данные |                                               |                    |            |              |           |                 |                      |                             |              |                      |                                                             |                                               |                            |                     | 1                              |                        |                        |                       |                       |                      |                               | дан                            | ные                          |                          | Hy-<br>HO-<br>1,%                        |
| №<br>п/п | HOCTE<br>R.A | 3, кБ.А.<br>Схемы и<br>группы со-<br>единений | Номина.<br>напряже | ения, В    | Чис<br>вит   | ков       | В <i>І</i><br>! | нение<br>птқа,<br>им | Внутренний диаметр $D_{I,}$ | ные<br>ры.   |                      | Канал между<br>обмотками<br>ВН и НН<br>а <sub>12</sub> . см | ота<br>этки<br>: <i>l</i> <sub>2</sub> ,<br>м | Диаметр<br>стержня<br>d см | сече                | тивное<br>ние, см <sup>2</sup> |                        | та, см                 | Расстояние между см   | Масса<br>масла,<br>кг | Масса<br>бака,<br>кг | <i>Р</i> <sub>к</sub> ,<br>Вт | $P_{\scriptscriptstyle X},$ BT | $u_{\kappa}$ , $\frac{0}{0}$ | <i>i<sub>o</sub></i> , % | Напряжение нулевой последовательности, % |
| 11/11    | Мощ          | Схел групп един                               | ВН                 | НН         | ВН           | НН        | ВН              | НН                   | Внутрен<br>диаметр<br>см    | $a_2$        | HH<br>a <sub>1</sub> | Канал<br>обмот<br>ВН 1                                      | Beice of $l_I = l_I$                          | Диаг<br>стер               | стер-<br>жень<br>Пс | ярмо $\Pi_{\mathrm{R}}$        | стер-<br>жень<br>$h_C$ | ярмо $h_{\mathcal{H}}$ | Расст<br>мех<br>осями | KI                    |                      |                               |                                |                              |                          | Напр<br>левс<br>вате                     |
| 1        |              | 3 Y/Y-0                                       | 3300               | 230        | 710          | 49        | 9,1             | 84,5                 | 11,9                        | 3,5          | 1,4                  | 1,4                                                         | 40,0                                          | 11,0                       | 80,6                | 92,4                           | 44,0                   | 10,5                   | 26,0                  | 170                   | 80                   | 1280                          | 265                            | 4,5                          | 2,8                      | 50                                       |
| 2        | 63           | 3 Y/Y-0                                       | 6000               | 420        | 1260         | 88        | 4,7             | 44,5                 | 11,9                        | 3,8          | 1,25                 | 1,25                                                        | 40,0                                          | 11,0                       | 80,6                | 92,4                           | 43,5                   | 10,5                   | 25,0                  | 170                   | 80                   | 1280                          | 265                            | 4,5                          | 2,8                      | 50                                       |
| 3        | 63           | 3 Y/Y-0                                       | 10000              | 400        | 2100         | 84        | 2,83            | 46,8                 | 11,9                        | 3,75         | 1,3                  | 1,3                                                         | 39,5                                          | 11,0                       | 80,6                | 92,4                           | 43,4                   | 10,5                   | 25,5                  | 170                   | 80                   | 1280                          | 265                            | 4,5                          | 2,8                      | 50                                       |
| 4        |              | 0 Y/Y-0<br>0 Y/Y-0                            | 3300<br>6000       | 230<br>440 | 605<br>1125  | 42<br>82  | 10.9<br>5.43    | 192.5<br>99.6        | 12.4<br>12.5                | 3.15<br>3.0  | 2.2<br>2.2           | 1.1<br>1.2                                                  | 49.5<br>49.0                                  | 11.5<br>11.5               | 90.2<br>90.2        | 107.9<br>107.9                 | 53.5<br>53.0           | 11.5<br>11.5           | 26.0<br>26.5          | 210<br>210            | 150<br>150           | 1970<br>1970                  | 365<br>365                     | 4.5<br>4.5                   | 2.6<br>2.6               | 50<br>50                                 |
| 6        |              | 0 1/1-0<br>0 Y/Д-11                           | 6300               | 400        | 1180         | 130       | 5,75            | 63,4                 | 12,5                        | 3,1          | 2,3                  | 1,0                                                         | 49,0                                          | 11,5                       | 90,2                | 107,9                          | 53,5                   | 11,5                   | 26,5                  | 210                   | 150                  | 1970                          | 365                            | 4,5                          | 2,6                      | 50                                       |
| 7        |              | 0 Y/Y-0                                       | 10000              | 400        | 1850         | 74        | 3.52            | 110.8                | 12.3                        | 3.25         | 2.1                  | 1.0                                                         | 50.0                                          | 11.5                       | 90.2                | 107.9                          | 53.5                   | 11.5                   | 26.0                  | 210                   | 150                  | 1970                          | 365                            | 4.5                          | 2.6                      | 50                                       |
| 9        |              | 0 Y/Y-0<br>0 Д/Y-11                           | 3000<br>3300       | 230<br>690 | 394<br>730   | 30<br>88  | 20.7<br>10.85   | 235.6<br>77.5        | 14.8<br>15.0                | 3.7<br>3.6   | 2.7<br>2.8           | 0.9<br>0.9                                                  | 46.5<br>47.0                                  | 14.0<br>14.0               | 134.2<br>134.2      | 141,1<br>141,1                 | 51.5<br>52.0           | 13.5<br>13.5           | 30.7<br>31.5          | 295<br>295            | 220<br>220           | 2650<br>2650                  | 565<br>565                     | 4.5<br>4.5                   | 2,4<br>2,4               | 50<br>50                                 |
| 10       |              | 0 Ү/Д-11                                      | 6000               | 690        | 770          | 152       | 10.25           | 44.8                 | 14.7                        | 3.85         | 2,50                 | 1.0                                                         | 47.0                                          | 14.0                       | 134.2               | 141.1                          | 51.5                   | 13.5                   | 31.0                  | 295                   | 225                  | 2650                          | 565                            | 4.5                          | 2.4                      | 50                                       |
| 11       |              | 0 Y/Y-0<br>0 Y/Y-0                            | 10000<br>3300      | 400<br>230 | 1273<br>358  | 51<br>25  | 6.15<br>33,5    | 132.6<br>348,0       | 14.8<br>16,0                | 3.95<br>4,5  | 2,45<br>2,5          | 0.95<br>1,0                                                 | 46.5<br>55,0                                  | 14.0<br>15,0               | 134,2<br>155,1      | 141,1<br>168,1                 | 51.5<br>59,0           | 13.5<br>14,5           | 30.7<br>33,5          | 295<br>340            | 225<br>260           | 2650<br>3700                  | 565<br>820                     | 4.5<br>4,5                   | 2.4<br>2,3               | 50<br>60                                 |
| 13       |              | 0 Д/Ү-11                                      | 6000               | 440        | 1200         | 46        | 10.65           | 181.0                | 16.0                        | 4.5          | 2.5                  | 1.1                                                         | 55.0                                          | 15.0                       | 155.1               | 168.1                          | 60.0                   | 14.5                   | 34.0                  | 340                   | 260                  | 3700                          | 850                            | 4.5                          | 2.3                      | 60                                       |
| 14<br>15 |              | 0 Y/Д-11<br>0 Y/Y-0                           | 6000<br>10000      | 690<br>400 | 630<br>1050  | 126<br>42 | 17.8<br>11.1    | 64.4<br>198.0        | 16.0<br>16.0                | 4.0<br>4.55  | 2.5<br>2.45          | 1.2<br>0.95                                                 | 54.0<br>55.0                                  | 15.0<br>15.0               | 155.1<br>155.1      | 168.1<br>168.1                 | 59.0<br>59.0           | 14.5<br>14.5           | 34.0<br>33.0          | 340<br>340            | 260<br>260           | 3700<br>3700                  | 820<br>820                     | 4.5<br>4.5                   | 2.3<br>2,3               | 60                                       |
| 16       | 630          | 0 Д/Ү-11                                      | 6000               | 400        | 624          | 24        | 29.2            | 469.0                | 21.0                        | 5.2          | 3.15                 | 0.9                                                         | 59.3                                          | 20.0                       | 271.6               | 282.6                          | 66.0                   | 19.5                   | 40.5                  | 790                   | 480                  | 7000                          | 1420                           | 5.0                          | 1.5                      | 70                                       |
|          |              | 0 Д/Y-11<br>0 Y/Y-0                           | 6000<br>10000      | 400<br>400 | 441<br>376   | 17<br>15  | 40,7<br>63,1    | 754,8<br>1403,0      | 25,0<br>29,4                | 4,45<br>4,35 | 1,95<br>3,6          | 3,05<br>1,1                                                 | 68,0<br>97,0                                  | 24,0<br>26,0               | 371,0<br>435,0      | 372,5<br>440,7                 | 78,0<br>107.0          | 23,0                   | 48,0<br>52,0          | 1500<br>2400          | 900<br>1120          | 10000<br>14500                | 2400<br>3100                   | 5,5<br>5,0                   | 1,4<br>1,3               | 70<br>70                                 |
| 19       |              | 5 Y/Y-0                                       | 3300               | 230        | 1032         | 72        | 2.78            | 22.3                 | 9.8                         | 1.8          | 2.2                  | 1.45                                                        | 28.0                                          | 9.0                        | 56.1                | 57.7                           | 34.0                   | 25.0<br>8.5            | 21.3                  | 95                    | 60                   | 490                           | 120                            | 4.5                          | 3.0                      | 40                                       |
| 20<br>21 |              | 5 Y/Y-0<br>0 Y/Y-0                            | 11000<br>3000      | 230<br>230 | 3441<br>938  | 72<br>72  | 0.785<br>4.01   | 32.4<br>54.2         | 9.8<br>9.8                  | 2.7<br>2.7   | 1.25<br>1.55         | 1.35<br>1.05                                                | 28.05<br>43.0                                 | 9.0<br>9.0                 | 56.1<br>56.1        | 57.7<br>57.7                   | 34.0<br>49.5           | 8.5<br>8.5             | 21.3<br>21.3          | 95<br>110             | 60<br>75             | 490<br>850                    | 120<br>145                     | 4.5<br>4.5                   | 3.0<br>2.8               | 40<br>40                                 |
| 22       | 40           | 0 Y/Y-0                                       | 6000               | 400        | 1877         | 125       | 2,06            | 27,8                 | 9,8                         | 2,75         | 1,65                 | 0.95                                                        | 43,1                                          | 9.0                        | 56.1                | 57.7                           | 49,5                   | 8.5                    | 21.3                  | 110                   | 75                   | 850                           | 145                            | 4.5                          | 2,8                      | 40                                       |
| 23<br>24 |              | 0 Y/Y-0<br>0 Y/Y-0                            | 10000<br>11000     | 400<br>440 | 3128<br>1450 | 125<br>58 | 1.23<br>4.68    | 27.8<br>120          | 9.8<br>14,9                 | 2.7<br>3.7   | 1.65<br>2,7          | 0.95<br>0.9                                                 | 43.1<br>45.6                                  | 9.0<br>14.0                | 56.1<br>135.2       | 57.7<br>137.6                  | 49.5<br>52,0           | 8.5<br>13,5            | 21.3<br>30.7          | 110<br>225            | 75<br>175            | 850<br>2100                   | 145<br>460                     | 4.5<br>4.5                   | 2.8<br>1,7               | 40<br>50                                 |
| 25       |              | 0 Y/Y-0                                       | 11000              | 440        | 1100         | 44        | 7.3             | 154.8                | 17.0                        | 3.65         | 2,6                  | 1,2                                                         | 49,5                                          | 16.0                       | 166.0               | 172.0                          | 55.5                   | 15,5                   | 33.0                  | 315                   | 225                  | 3000                          | 650                            | 4.5                          | 2.3                      | 60                                       |
| 26       |              | 0 Y/Д-11<br>0 Y/Д-11                          | 11000              | 190<br>190 | 1100<br>869  | 33        | 7.3<br>11.0     | 210<br>309.6         | 17.0<br>19.0                | 3.65         | 2.6<br>2.75          | 1.2<br>1.3                                                  | 49.6<br>55.2                                  | 16.0<br>18.0               | 166.0<br>222.6      | 172.0<br>230.6                 | 55.5<br>62.0           | 15.5<br>17.5           | 33.0<br>36.0          | 315<br>465            | 225<br>300           | 3000<br>4100                  | 650<br>900                     | 4.5<br>5.0                   | 2.3                      | _                                        |
| 27<br>28 |              | 0 Y/Д-11<br>0 Y/Y-0                           | 11000<br>11000     | 440        | 809<br>875   | 26<br>35  | 11.0            | 242.0                | 19.0                        | 3.6<br>3.6   | 2.75                 | 1.3                                                         | 55.2<br>55.6                                  | 18.0                       | 222.6               | 230.6                          | 62.0                   | 17.5                   | 36.0                  | 465<br>465            | 300                  | 4100                          | 900                            | 5.0                          | 1.5<br>1.5               | 60                                       |
| 29       | 630          | 0 ДД-0                                        | 11000              | 190        | 1158         | 20        | 11,1            | 564                  | 21,0                        | 4,45         | 3,4                  | 1,4                                                         | 58,0                                          | 20,0                       | 271,6               | 282,6                          | 66,0                   | 19,5                   | 40,5                  | 800                   | 480                  | 5000                          | 1400                           | 5,5                          | 1,6                      | _                                        |
| 30<br>31 |              | 0 Д/Y-11<br>0 Y/Y-0                           | 11000<br>6600      | 440<br>420 | 1170<br>409  | 27<br>26  | 11.1<br>34.8    | 417.6<br>412,8       | 21.0<br>21.0                | 4.45         | 3.4<br>3,4           | 1.4                                                         | 58.0<br>60.0                                  | 20.0<br>20.0               | 271.6<br>271.6      | 282.6<br>282,6                 | 66.0<br>66.0           | 19.5<br>19.5           | 40.5<br>40,5          | 840<br>840            | 480<br>480           | 5100<br>5100                  | 1400<br>1400                   | 5.5<br>5,5                   | 1.6                      | 70<br>70                                 |
| _        |              | 0 1/1-0<br>0 Д/Y-11                           | 11000              | 440        | 779          | 18        | 25,8            | 1120                 | 27,0                        | 4,4<br>4,55  | 3,4                  | 1,4<br>1,9                                                  | 97,0                                          | 26,0                       | 463,5               | 469,5                          | 107,0                  | 25,0                   | 52,0                  | 2400                  | 1120                 |                               | 2400                           | 5,5                          | 1,6<br>1,3               | 70<br>70                                 |
| 32       | 1000         | · /4 · · · ·                                  | 11000              | 110        | ,,,          | 10        | 20,0            | 1120                 | 27,0                        | 1,55         | 5,0                  | 1,7                                                         | ,,,0                                          | 20,0                       | 105,5               | 107,5                          | 107,0                  | 20,0                   | 52,0                  | 2.00                  | 1120                 | 12000                         |                                | ٥,٥                          | 1,0                      | , 0                                      |

Примечания:

<sup>1 .</sup> f=50 Гц.

<sup>2.</sup> Трансформаторы № 1—18 с алюминиевыми обмотками; трансформаторы № 19—32 с медными обмотками.

<sup>3.</sup> Обмотки ВН имеют пять ступеней напряжения: 95; 97,5; 100; 102,5; 105% от  $U_{\text{ном}}$ . Напряжения и числа витков обмотки ВН даны для средней ступени.

<sup>4.</sup> Магнитные системы собраны впереплет, с косыми стыками над крайними стержнями и прямым над средним стержнем, из холоднокатаной стали марки 3404 — 0,35 мм по ГОСТ 21427-83

<sup>5.</sup> Напряжение нулевой последовательности в процентах от номинального фазного отнесено к току нулевой последовательности, равному номинальному току.

б. Обмотки НН трансформаторов № 1—5, 7—10, 11—13, 15—25, 28, 30—32 соединены по схеме звезда с нулевым выводом

## СОДЕРЖАНИЕ

| 1. Расчетное задание по трансформаторам и    |    |
|----------------------------------------------|----|
| автотрансформаторам                          | 3  |
| 2 Методические указания по трансформаторам и |    |
| автотрансформаторам                          | 8  |
| 3. Указания к оформлению                     | 16 |
| 1 1                                          | 16 |

Учебное издание Качалина Елена Викторовна Коробков Сергей Алексеевич

# РАСЧЕТ МАГНИТНОЙ ЦЕПИ, ПАРАМЕТРОВ ХОЛОСТОГО ХОДА И КОРОТКОГО ЗАМЫКАНИЯ ТРАНСФОРМАТОРОВ

Методические указания

Для студентов, обучающихся по направлению «Электроэнергетика и электротехника»

## Редактор издательства

| Темплан издания М | Подписано в печать |                       |
|-------------------|--------------------|-----------------------|
| Печать офсетная   | Формат 60х84/16    | Физ. печ .л. 1,25+вкл |
| Тираж             | Изд. №             | Заказ                 |

Издательство МЭИ, 111250, Москва, Красноказарменная ул., д.14 Отпечатано в